The Way an Atomic Clock Works

  |   By

Atomic clocks are the most accurate chronometers we have. They are millions of times more accurate than digital clocks and can keep time for hundreds of millions of years without losing as much as a second. Their use has revolutionised the way we live and work and they have enabled technologies such as satellite navigation systems and global online commerce.

But how do they work? Strangely enough, atomic clocks work in the same way as ordinary mechanical clocks. But rather than have a coiled spring and mass or pendulum they use the oscillations of atoms. Atomic clocks are not radioactive as they do not rely on atomic decay instead they rely on the tiny vibrations at certain energy levels (oscillations) between the nucleus of an atom and the surrounding electrons.

When the atom receives microwave energy at exactly the right frequency, it changes energy state, this state is constant an unchanging and the oscillations can be measured just like the ticks of a mechanical clock. However, while mechanical clocks tick every second, atomic clocks ‘tick’ several billion times a second. In the case of caesium atoms, most commonly used in atomic clocks, they tick 9,192,631,770 per second – which is now the official definition of a second.

Atomic clocks now govern the entire global community as a universal timescale UTC (Coordinated Universal Time) based on atomic clock time has been developed to ensure synchronization. UTC atomic clock signals can be received by network time servers, often referred to as NTP Servers, that can synchronize computer networks to within a few milliseconds of UTC.

Networking Secrets Synchronization

  |   By

An efficient and error free operation is the goal of any administrator that is setting up a computer network. Ensuring the smooth running and passing of data without errors or loss of connections is a prerequisite for any decent functioning network system.

There are some fundamental things that can be carried out to minimise risk of encountering problems further down the line. A decent network server is a must, as is an efficient router but there is one piece of technology often overlooked in computer networking – the network time server.

The importance of correct computer network time only becomes apparent when something goes wrong. When an error does occur (and without adequate time synchronization it is a matter of when not if) it can be next to impossible to pin down what caused in and where. Just imagine all the error logs on the different machines all with timestamps telling a different time, finding out where and when the error occurred can be near impossible – and that’s before you can even get round to fixing it.

Fortunately most network administrators appreciate the value of synchronization and most ensure the network receives a time signal from across the Internet. However, many administrators are unaware of the vulnerabilities this may cause throughout the network.

By using an online time server, a UDP port (123) needs be kept open which can be an open gate to malicious programs and users. Furthermore, there is no authentication of the online time server so the signal could be hijacked or just be inaccurate.

A dedicated network time server running the protocol NTP (Network Time Protocol) will operate externally to the network and receive the time from an atomic clock source directly (through radio or GPS) making NTP servers, secure, accurate and reliable.

Seven Reasons why your Network needs a Time Server

  |   By

Time servers, often referred to as NTP time servers after the protocol (Network Time Protocol) used to distribute time are an increasingly important part of any computer network. The NTP server receives a timing signal from an accurate source (such as an atomic clock) and then distributes it to all devices on the network.

However, despite the increasing importance of these time synchronisation devices, many network administrators still fail to accurately synchronise their networks and can leave their entire computer system vulnerable.

Here are seven reasons why a NTP time server is a crucial piece of equipment for YOUR network:

• Security: NTP servers use an external source of time and don’t rely on an open firewall port. An unsynchronized server will also be vulnerable to malicious users who can take advantage of time differences.

• Error logging: failing to adequately synchronize a computer network may mean that it is near impossible to trace errors or malicious attack, especially if the times on the log files from different machine do not match.

• Legal Protection: Not being able to prove the time can have legal implications if somebody has committed fraud or other illegal activity against your company.

• Accuracy: NTP Time Servers ensure that all networked computers are synchronized automatically to the exact time throughout your network so everybody in your company can have access to the exact time.

• Global Harmony: A global timescale known as UTC (Coordinated Universal Time) has been developed to ensure that systems across the globe can run the exact same time. By utilising a NTP server not only will every device on you network be synchronised together but your network will be synchronised with every other network on Earth that is hooked up to UTC.

• Control: With a NTP server you have control of the configuration. You can allow automatic changes each spring and autumn for daylight saving time or set your server time to be locked to UTC time only – or indeed, any time zone you choose.

• Automatic update of time. No user intervention required, a NTP time server will account for leap seconds and time zones ensuring trouble free synchronisation.

Using NTP Networks

  |   By

Network Time Protocol is by far the most widely used application for synchronizing computer time across local area networks and wider areas networks (LANs and WANs). The principles behind NTP are fairly simple. It checks the time on a system clock and compares it with an authoritative, single source of time, making corrections to the devices to ensure they are all synchronized to the time source.

Selecting the time source to use is perhaps the fundamentally most important thing in setting up a NTP network. Most network administrators opt, quite rightly to use a source of UTC time (Coordinated Universal Time). This is a global timescale and means that a computer network synchronized to UTC is not only using the same timescale as every other UTC synchronized network but also there is no need to worry about different time zones around the globe.

NTP uses different layers, known as strata, to determine the closeness and therefore accuracy, to a time source. As UTC is governed by atomic clocks, any atomic clock giving out a time signal is referred to as stratum 0 and any device that receives the time directly from an atomic clock is stratum 1. Stratum 2 devices are devices that receive the time from stratum 1 and so on. NTP supports over 16 different stratum levels although accuracy and reliable decrease with each stratum layer further away you get.

Man network administrators opt to use an internet source of UTC time. Apart from the security risks of using a time source from the internet and allowing it access through your firewall. Internet time servers are also stratum 2 devices in that they are normally servers that receive the time from single stratum 1 device.

A dedicated NTP time server on the other had are stratum 1 devices in themselves. They receive the time directly from atomic clocks, either via GPS or long wave radio transmissions. This makes them far more secure than internet providers as the time source is external to the network (and firewall) but also it makes them more accurate.

With a stratum 1 time server a network can be synchronized to within a few milliseconds of UTC without risk of compromising your security.

Computer Network Timing Solutions

  |   By

Computer networks and the internet have dramatically changed the way we live our lives. Computers are now in constant communication with each other making possible transactions such as online shopping, seat reservation and even email.

However, all this is only possible thanks to accurate network timing and in particular the use of Network Time Protocol (NTP) used to ensure all machines on a network are running the same time.

Timing synchronization is crucial for computer networks. Computers use time in the form of timestamps as the only marker to separate two events, without synchronization computers have difficulty in establishing the order of events or indeed if an event has happened or not.

Failing to synchronize a network can have untold effects. Emails may arrive before they are sent (according to the computer’s clock), data may get lost or fail to store and worst-of-all, the entire network could be vulnerable to malicious users and even fraudsters.

Synchronization with NTP is relatively straight forward as most operating systems have a version of the time protocol already installed; however, choosing a timing reference to synchronize to is more challenging.

UTC (Coordinated Universal Time) is a global timescale governed by atomic clocks and is used by nearly all computer networks across the globe. By synchronizing to UTC a computer network is essentially synchronizing the network time with ever other computer network in the world that uses UTC.

The internet has plenty of sources of UTC available but security issues with the firewall means the only safe method of receiving UTC is externally. Dedicated NTP time servers can do this using either long wave radio or GPS satellite transmissions.

Dealing With Time computers synchronisation and timestamps

  |   By

Time is important for the smooth running of our day to day lives. Everything we do is either governed by or restrained because of time. Yet time is even more essential for computer systems as it is the only point of reference a computer has to distinguish between events and processes.

Everything a computer does is logged by the processor with what process was done and exactly when it was carried out. As computers can process hundreds if not thousands of transactions a second so the time stamp is vital for establishing the order of events.

Computers do not read and use the time in the same format that we do. A computer timestamp takes the form of a single digit that counts the number of seconds from a set point in time. In most systems this is known as the ‘prime epoch’ and is set from 00:00:00 UTC on January 1, 1970. So a timestamp for the date 23 June 2009 the timestamp would read: 1246277483 as this is the number of seconds from the prime epoch.

Computer timestamps are sent across networks and the internet, for instance every time an email is sent it is accompanied by a timestamp. When the email is replied to this too comes with a timestamp. Yet, when neither computer is synchronized the replied email could arrive back with an earlier code and this can cause untold confusion for a computer as according to its logs the email will have arrived back before the original was sent.

For this reason computer networks are synchronized to the global timescale UTC (Coordinated Universal Time). UTC is kept true by a constellation of atomic clocks which means that and computer network synchronised to a UTC source will be highly accurate.

Time synchronization on computers is dealt with by the protocol NTP (Network Time Protocol). Special dedicated NTP servers are available the receive a secure time code from either the GPS network or from specialist radio transmissions broadcast by national physical laboratories and then synchronize entire networks to the single time source.

Synchronizing the Time on your Computer

  |   By

Keeping accurate time is essential for many applications and dedicated NTP time servers make the job easy for network administrators. These devices receive an external time signal, often from GPS or sometimes from broadcast signals put out by organisations such as NIST, NPL and PTB (national physics labs from US, UK and Germany).

Synchronization with a NTP time server is made all the more easier thanks to NTP (network time protocol) this software protocol distributes the time source by constantly checking the time on all devices and adjusting any drift to match the time signal that is received.

Time synchronization is not just the concern of large networks. Even single machines and routers ought to be synchronised because at the very least it will help keep a system secure and make error detection a whole lot easier.

Fortunately, most versions of Windows contain a form of NTP. Often it is a simplified version but it is enough to allow a PC to be synchronized with the global time scale UTC (Coordinated Universal Time). On most Windows machines this is relatively easy to do and can be achieved by double clicking on the clock icon in the task bar then selecting a time provider in the internet time tab.

These time sources are internet based meaning that they are external to the firewall so a UDP port has to be left open to allow the time signal to enter. This can cause some security issues so for those wanting perfect synchronization without any security issues then the best solution is to invest in a dedicated time server. These need not be expensive and as they receive an atomic clock time signal externally then here is no breach in the firewall leaving your network secure.

The Measuring of Time

  |   By

Measuring the passing of time has been a preoccupation of humans since the dawn of civilization. Broadly speaking, measuring time involves using some form of repetitive cycle to work out how much time has passed. Traditionally this repetitive cycle has been based on the movement of the heavens such as a day being a revolution of the Earth, a month being an entire orbit of the Earth by the moon and a year being earth’s orbit of the sun.

As our technology progressed we have been able to measure time in smaller and smaller increments from sundials that allowed us to count the hours, mechanical clocks that let us monitor the minutes, electronic clocks that let is for the first time accurately record seconds to the current age of atomic clocks where time can be measured to the nanosecond.

With the advancement in chronology that has led to technologies such as NTP clocks, time servers, atomic clocks, GPS satellites and modern global communications, comes with another conundrum: when does a day start and when does it finish.

Most people assume a day is 24 hours long and that it runs from midnight to midnight. However, atomic clocks have revealed to us that a day is not 24 hours and in fact the length of a day varies (and is actually increasing gradually over time).

After atomic clocks were developed there was a call from many sectors to come up with a global timescale. One that uses the ultra precise nature of atomic clocks to measure its passing but also one that takes into account the Earth’s rotation. Failing to account for the variable nature of a day’s length would mean any static timescale would eventually drift with day slowly drifting into night.

To compensate for this the world’s global timescale, called UTC (coordinated universal time) has additional seconds added (leap seconds) to ensure that there is no drift. UTC time is kept true by a constellation of atomic c clocks and it is utilised by modern technologies such as the NTP time server which ensures computer networks all run  the exact same precise time.

Milestones in Chronology From Crystals to Atoms

  |   By

Telling the time may seem a simple affair these days with the number of devices that display the time to us and with the incredible accuracy of devices such as atomic clocks and network time servers it is quite easy to see how chronology has been taken for granted.

The nanosecond accuracy that powers technologies such as the GPS system, air traffic control and NTP server systems (Network Time Protocol) is a long way from the first time pieces that were invented and were powered by the movement of the sun across the heavens.

Sun dials were indeed the first real clocks but they obviously did have their downsides – such as not working at night or in cloudy weather, however, being able to tell the time fairly accurately was a complete innovation to civilisation and helped for more structured societies.

However, relying on celestial bodies to keep track of time as we have done for thousands of years, would not prove to be a reliable basis for measuring time as was discovered by the invention of the atomic clock.

Before atomic clocks, electronic clocks provided the highest level of accuracy. These were invented at the turn of the last century and while they were many times more reliable than mechanical clocks they still drifted and would lose a second or two every week.

Electronic clocks worked by using the oscillations (vibrations under energy) of crystals such as quartz, however, atomic clocks use the resonance of individual atoms such as caesium which is such a high number of vibrations per second it makes the incredibly accurate (modern atomic clocks do not drift by even a second every 100 million years).

Once this type of time telling accuracy was discovered it became apparent that our tradition of using the rotation of the earth as a means of telling time was not as accurate as these atomic clocks. Thanks to their accuracy it was soon discovered the Earth’s rotation was not precise and would slow and speed up (by minute amounts) each day. To compensate for this the world’s global timescale UTC (Coordinated Universal Time) has additional seconds added to it once or twice a year (Leap seconds).

Atomic clocks provide the basis of UTC which is used by thousands of NTP servers to synchronise computer networks to.

MSF Outage 11 June NPL Maintenance

  |   By

The UK’s MSF signal broadcast from Anthorn, Cumbria and utilised by UK NTP server users is be turned off for a four hour period on 11 June for scheduled maintenance. The MSF 60 kHz time and frequency standard will be off between 10.00 and 14:00 BST (9:00 – 13:00 UTC).

Users of NTP time servers that utilise the MSF signal should be aware of the outage but shouldn’t panic. Most network time servers that use the Anthorn system should still function adequately and the lack of a timing signal for four hours should not create any synchronisation problems or clock drift.

However, any testing of time servers that utilise MSF should be conducted before or after the scheduled outage. Further information is available from NPL.

Any network time server users that require ultra-precise precision or are feel temporary loss of this signal could cause repercussions in their time synchronisation should seriously consider utilising the GPS signal as an additional means of receiving a time signal.

GPS is available literally anywhere on the planet (as long as there is a good clear view of the sky) and is never down due to outages.

For further information on GPS NTP server can be found here.