NTP Servers and the Different Time Sources

  |   By

NTP servers are essential devices for computer network time synchronisation. Ensuring a network coincides with UTC (Coordinated Universal Time) is vital in modern communications such as the Internet and is the primary function of the network time server (NTP server).

As their name suggests, these time servers use the protocol NTP (Network Time Protocol) to handle the synchronisation requests. NTP is already installed in many operating systems and synchronisation is possible without an NTP server by utilising an Internet time source, this can be unsecure and inaccurate for many network needs.

Network time servers receive a far more accurate and secure time signal. There are two methods of receiving the time using a time server: utilising the GPS network or receiving long wave radio transmissions.

Both these methods of receiving a time source are secure as they are external to any network firewall. They are also accurate as both sources of time are generated directly by atomic clocks rather than an Internet time service that are normally NTP devices connected to a third party atomic clock.

The GPS network provides an ideal source of time for NTP servers as the signals are available anywhere. The only downside of using the GPS network is that a view of the sky is required to lock-on to a satellite.

Radio referenced time sources are more flexible in that the long wave signal can be received indoors. They are limited in strength and not every country has a time signal although some signals such as the German DCF and the USA WVBB are available in neighbouring states.

Atomic Clocks and Gravity

  |   By

We couldn’t live our lives without them. They affect almost every aspect of our daily lives and many of the technologies that we take for granted in today’s world, just couldn’t function without them. In fact, if you are reading this article on the Internet the there is a chance you are using one right now.

Without knowing it, atomic clocks govern all of us. From the Internet; to mobile phone networks and satellite navigation, without atomic clocks none of these technologies would be possible.

Atomic clocks govern all computer networks using the protocol NTP (network time protocol) and network time servers, computer systems around the world remain in perfect synchronisation.

And they will continue to do so for several million years as atomic clocks are so accurate they can maintain time to within a second for well over 100 million years. However, atomic clocks can be made even more accurate and a French team of scientists are planning to do just that by launching an atomic clock into space.

Atomic clocks are limited to their accuracy on Earth because of the effects of he gravitational pull of the planet on time itself; as Einstein suggested time itself is warped by gravity and this warping slows down time on Earth.

However, a new type of atomic clock named PHARAO (Projet d’Horloge Atomique par Refroidissement d’Atomes en Orbit) is to be placed aboard the ISS (international space station) out of reach from the worst effects of Earth’ gravitational pull.

This new type of atomic clock will allow hyper accurate synchronization with other atomic clocks, here on Earth (which in effect will make synchronization to an NTP server even more precise).

Pharao is expected to reach accuracies of around one second each 300 million years and will allow further advances in time reliant technologies.

IEEE 1588 Time Protocol Promises More Accurate Time Synchronisation

  |   By

Despite being around for over twenty years, the current favoured time protocol by most networks, NTP (Network Time Protocol) has some competition.

Currently NTP is used to synchonise computer networks using network time servers (NTP servers). Currently NTP can synchronise a computer network to a few milliseconds.

The Precision Time Protocol (PTP) or IEEE 1588 has been developed for local systems requiring very high accuracy (to nano-second level). Currently this type of accuracy is beyond the capabilities of NTP.

PTP requires a master and slave relation ship in the network. A two-step process is required to synchronise devices using the IEEE 1588 (PTP). First, determination of which device is the master is required then the offsets and natural network delays are measured. PTP uses the Best Master Clock algorithm (BMC) to establish which clock on the network is the most accurate and it becomes the master whilst all other clocks become slaves and synchronise to this master.

IEEE (Institute of Electrical and Electronic Engineers) describes IEEE 1588 or (PTP) as designed to “fill a niche not well served by either of the two dominant protocols, NTP and GPS.  IEEE 1588 is designed for local systems requiring very high accuracies beyond those attainable using NTP. It is also designed for applications that cannot bear the cost of a GPS receiver at each node, or for which GPS signals are inaccessible.” (quoted in Wikipedia)

PTP can provide accuracy to a few nano-seconds but this type of accuracy is not required by most network users however, the target use of PTP appears to be mobile broadband and other mobile technologies as PTP supports time-of-day information, used by billing and service level agreement reporting functions in mobile networks.

A Brief History of Computer Time

  |   By

Telling the time is something may of us learn when we are very small children. Knowing what time it is is an essential part of our society and we couldn’t function without it. Just imagine if we didn’t tell the time – when would you go to work? When would you leave and how would it be possible to meet other people or arrange any kind of function.

While telling the time is crucial to us, it is even more vital for computers who use time as the only point of reference and amongst computer networks time synchronisation is vital. Without recording the passing of time, computers couldn’t function as there would be no reference to order programs and functions.
But the way computers tell the time and date is far different to the way we record it. Rather than record a separate time, date and year – computer systems use a single number. This number is based on the number of seconds from a set point in time – known as the prime epoch.

When this epoch is, depends on the operating system or programming language in question. For instance, Unix systems have a prime epoch which starts at 1 January 1970 and the number of seconds from the epoch are counted in a 32 bit integer. Other operating systems, such as Windows, use a similar system but the epoch is different (Windows starts on 1 January 1601).

There are, however, disadvantages to this integer system. For instance as the Unix system is a 32-bit integer which started in 01 Jan 1970, by 19 January 2038 the integer will have exhausted every possible number and will have to return to zero’s. This could cause problems with systems reliant on Unix in a problem reminiscent of the Millennium bug.
There are other issues involving computer time also. Because of the global requirements of the Internet all computer time is now based on UTC (Coordinated Universal Time). However, UTC is altered on occasion by adding Leap Seconds to ensure the time matches the rotation of the Earth (the Earth’s rotation is never exact due to gravitational forces) so leap second handling has to be encompassed into a computer time systems.

Computer time is often associated with NTP (Network Time Protocol) which is used to synchronise computers often using a network time server.

Setting up Windows XP as an NTP Server

  |   By

A network time server or NTP server (Network Time Protocol), is a central computer or server on a network that controls the time and synchronises all machines on that network to it.

Windows XP can be set up to operate as an NTP server to synchronise the rest of the computers and devices on a network. Setting up a Windows XP machine to act as a NTP server involves editing the registry, however, editing an operating system registry can lead to potential problems and should only be conducted by somebody with experience of registry editing.

To configure Windows XP as an NTP server the first thing to do is to open the registry editor in Windows. This is done by clicking the Start button and selecting “Run” from the menu. Enter “regedit” in the run menu and press return. This should open the Windows registry editor.

Select the: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\NtpServer\ folder in the left hand pane. This folder holds the values for the NTP server.

Right-click the “Enabled” key in the right window pane and select “Properties”. This should open a dialog box where you can alter the value of the registry key. Enter “1” in the window, setting the value to “True” which turns the XP computer into a time server.

Close the registry and open the DOS command prompt by clicking the Windows Start button, selecting “Run”. Then type “cmd” in the text box and press return.

Type “Net stop w32time” into the command prompt and press “Enter.” Now type “net start w32time” this will restart the time server for Windows XP.

However, the XP machine, which is now set as a NTP server, will merely distribute the time it currently holds. If this time is inaccurate then it will inaccurate time that is distributed amongst the network.

To ensure an accurate and secure source of time is used then a dedicated NTP time server that receives the time from an atomic clock source should be used.

Network Time Protocol Time Synchronisation Made Easy

  |   By

One of the most important aspects of networking is keeping all devices synchronised to the correct time. Incorrect network time and lack of synchronisation can play havoc with system processes and can lead to untold errors and problems debugging.

And failing to ensure devices are continually checked to prevent drift can also lead to a synchronised network slowly becoming unsynchronised and leading to the kinds of problems aforementioned.

However, ensuring a network not only has the correct time but that that time is not drifting is achieved using the time protocol NTP.

Network Time Protocol (NTP) is not the only time synchronisation protocol but it is by far the most widely used. It is an open source protocol but is continually updated by a large community of Internet time keepers.

NTP is based around an algorithm that can work out the correct and most accurate time from a range of sources. NTP allows a single time source to be used by a network of hundreds and thousands of machines and it can keep each one accurate to that time source to within a few milliseconds.

The easiest way of synchronising a network with NTP is to use a NTP time server, also known as a network time server.

NTP servers use an external source of time, either from the GPS network (Global Positioning System), or from broadcasts from national physics laboratories such as NIST in the US or NPL in the UK.

These time signals are generated by atomic clocks which are many times more accurate than the clocks on computers and servers. NTP will distribute this atomic clock time to all devices on a network it will then keep checking each device to ensure there is no drift and correcting the device if there is.

Why Bother Using a NTP Time Server?

  |   By

Keeping computers synchronized on a network is vitally important, especially if the network in question deals with time sensitive transactions. And failing to keep a network synchronized can cause havoc leading to errors, vulnerabilities and endless problems with debugging.

However with the amount of online time servers available from reputable places such as NIST or Microsoft it is often queried as to why computer networks need to be synchronised to an external NTP time server.

These dedicated NTP devices are often seen as an unnecessary expense and many network administrators simply forgo them and connect to an online time server, after-all, it does the same job doesn’t it?

Actually there are two major reasons why NTP time servers are not only important but essential for most computer networks and to overlook them could be costly in many ways.

Let me explain. The first reason why an external NTP server is important is accuracy. It’s not that internet time sources are generally inaccurate (although many are) but there is the question of distance the time reference has to travel. Furthermore, in times when the connection is lost -whether it’s because of a local connection fault or the time server itself goes down – the network will start to drift until the connection is restored.

Secondly and perhaps most important is the security issues involved in using an Internet time source. The main problem is that if your connection to a time server through the then a open port (UDP 123 fro NTP requests) has to be left open, And as with any open port that can used as a gateway for malicious software and users.

The reason dedicated NTP time servers are essential for computer networks is that they work completely independently and external to the network’s firewall. Instead of accessing a time source across the Internet they use either GPS or radio transmissions to get the time. And in doing so they can provide accurate time all the time without fear of losing a connection or allowing a nasty Trojan through the firewall.

Choosing a Time Source for UTC Synchronization

  |   By

Ensuring a computer network is time synchronized is vital in modern computer networks. Synchronization, not just between different machines on a network, but also each computer network that communicates with other networks needs to be synchronized with them too.

UTC (Coordinated Universal Time) is a global timescale that allows networks on other sides of the globe to be synchronized together. Synchronizing a network to UTC is relatively straightforward thanks to NTP (Network Time Protocol) the software protocol designed for this very purpose.

Most operating systems, including the latest Microsoft incarnation Windows 7, have a version of NTP (often in a simplified form known as SNTP), that allows a single time source to be used to synchronize every computer and device on a network.

Selecting a source for this time reference is the only real difficulty in synchronizing a network. There are three main locations where UTC time can accurately be received from:

Internet Time

There are many sources of internet time and the latest version of Windows (Windows 7) automatically synchronizes to Microsoft’s time server time.windows.com, so if Internet time is adequate Windows 7 users need not alter their settings. However, for computer networks where security is an issue then internet time sources can leave a system vulnerable as the time has to be received through the firewall forcing a UDP port to be left open. This can be utilised by malicious users. Furthermore, there is no authentication with an internet time source so the timecode could be hijacked before it arrives at your network.

GPS Time

Available literally everywhere on the globe, GPS provides a 24-hour, 365 days-a-year source of UTC time. Delivered externally to the firewall via the GPS satellite signal, time synchronization with GPS is accurate and secure.

Radio Transmissions

Usually broadcast by national physics laboratories such as NIST in the US and the UK’s NPL, the time signals are received via longwave and are also external to the firewall so are secure and accurate.

A dedicated NTP time server can receive both radio and GPS time signal guaranteeing accuracy and security.

Configuring a Dedicated NTP Time Server on Windows 7

  |   By

Windows 7 is the very latest operating system from Microsoft. Replacing the rather disappointing Windows Vista, Windows 7 promises to correct the flaws that made its predecessor so unpopular.

One of the changes Windows 7 makes is that it automatically synchronizes the time using the Windows Time service located at windows.time.com. Whilst this is an accurate stratum 2 time server, managed by Microsoft, it can be changed for another source of Internet time. However, even Microsoft recommend that Internet time sources should not used for computer networks as they can’t be authenticated by the time protocol NTP (Network Time protocol). Furthermore, an internet time source needs a port left open in the firewall for the time signals to make it through. Any open port in a firewall can be used by a malicious user to gain access to the network.

For a secure, authenticated and accurate method of synchronizing a Windows 7 network, then it is wise to use a dedicated network time server. Most of these time servers use the protocol NTP (Network Time Protocol) which can easily distribute a single time server throughout a network of hundreds and even thousands of machines.

Time servers plug directly into the router/switch for the network or can be installed on a single machine. Rather than rely on the Internet for a source of time and risk leaving the firewalls UDP port open, dedicated NTP time servers use either the GPS signals or long wave radio broadcasts transmitted from national physics laboratories such as the MSF signal broadcast by the UK’s NPL and the USA WWVB signal broadcast by NIST.

As these signals are external to the firewall and are able to be authenticated by NTP to establish the authority of the signals and are a more accurate and secure method of synchronizing a Windows 7 network.

IBM takes over London Congestion Charge with Galleon Time Servers

  |   By

Computer giants IBM have taken over the running of London’s congestion charge scheme this week and like their predecessors, Capita, they will be synchronizing the system with Galleon Systems time servers.

Essential for the running of the London congestion charge scheme and ensuring all the 400 cameras are synchronized to the exact same time, the blue-chip company have chosen Galleon Systems as their supplier of network time servers to control the congestion charging system.

Having supplied Capita the former controllers of the congestion charging scheme with its NTS network time servers to accurately synchronize the camera system, Galleon Systems are now supplying IBM with its mission critical hardware too.

Galleon Systems range of network time servers can synchronize networks with millisecond accuracy and receive an accurate and secure atomic clock time source from the GPS network (Global Positioning System) or the radio time signal broadcast by national physics laboratories like NPL.

The London congestion scheme may not be popular with many who have to pay the daily charge but the scheme has been recognised worldwide as an effective method of reducing city congestion and similar schemes to the London congestion zone are being implemented in cities across the globe.

Galleon Systems are the UK’s leading supplier of network time servers and NTP (Network Time Protocol) time synchronisation equipment, having been providing network timing solutions for over a decade.