Does my Computer Network Need to be Synchronized to an Atomic Clock?

  |   By

Time synchronization with network time protocol servers (NTP servers) is now a common consideration for network administrators, although, keeping exact time as told by an atomic clock on a computer network is often seen as unnecessary by some administrators

So what are the advantages of synchronizing to an atomic clock and is it necessary for your computer network?  Well the advantages of having accurate time synchronization are manifold but it is the disadvantages of not having it that are most important.

UTC time (Coordinated Universal Time) is a global timescale that is kept accurate by a constellation of atomic clocks from all over the world. It is UTC time that NTP time servers normally synchronize too. Not just that it provides a very accurate time reference to for computer networks to synchronize too but also it is used by millions of such networks across the globe therefore synchronizing to UTC is equivalent to synchronizing a computer network to every other network on the globe.

For security reasons it is imperative that all computer networks are synchronized to a stable time source. This doesn’t have to be UTC any single time source will do unless the network conducts time sensitive transactions with other networks then UTC becomes crucial otherwise errors may occur and these can vary from emails arriving before they were despatched to loss of data.  However, as UTC is governed by atomic clocks it makes it a highly accurate and auditable source of time.

Some network administrators take the shortcut of using an internet time server as a source of UTC time, forgoing the need for a dedicated NTP device. However, there are security risks in doing such a thing. Firstly, the inbuilt security mechanism used by NTP, called authentication, which confirms a time source is where and who it claims it is, is unavailable across the internet. Secondly, internet time servers are outside the firewall which means a UDP port needs to be left open to allow the time signal traffic. This can be manipulated by malicious users or viral programs.

A dedicated NTP time server is external to the network and receives the UTC atomic clock time from with either the GPS satellite system (global positioning system) or specialist radio transmissions broadcast by national physics laboratories.

What Atomic Clocks Have Done for Us

  |   By

Atomic clocks, as many people know they are highly accurate devices but the atomic clock is one of the most important inventions of the last 50 years and has given rise to numerous technologies and applications that have completely revolutionized our lives.

You may think how a clock could be so important regardless of how accurate it is, however, when you consider that precision, that a modern atomic clock doesn’t lose a second in time in tens of millions of years when compared to the next best chronometers – electronic clocks – that can lose a second a day you get to realise just how accurate they are.

In fact, atomic clocks have been crucial in identifying the smaller nuances of our world and the universe. For instance we have for millennia assumed that a day is 24 hours long but in fact, thanks to atomic clock technology we now know that the length of each day slightly differs and in general the earth’s rotation is slowing down.

Atomic clocks have also been used to accurately measure the earth’s gravity and have even proved Einstein’s theories of how gravity can slow time by accurately measuring the difference in the passing of time at each subsequent inch above the earth’s surface. This has been crucial when it comes to placing satellites in orbit as time passes quicker that high above the earth than it does on the ground.

Atomic clocks also form the basis for many of the technologies that we employ in our day to day lives. Satellite navigation devices rely on atomic clocks in GPS satellites. Not only do they have to take into account the differences in time above the orbit but it as sat navs use the time sent from the satellites to triangulate positions, a one-second inaccuracy would see navigational information inaccurate by thousands of miles (as light travels nearly 180,000 miles every second).

Atomic clocks are also the basis for the world’s global timescale – UTC (Coordinated Universal Time), which is utilised by computer networks throughout the world. Time synchronization to an atomic clock and UTC is relatively straight forward with a NTP time server. These use the time signal from the GPS system or special transmissions broadcast from large scale physics labs and then distribute it across the internet using the time protocol NTP.

The Sat Nav How it Works

  |   By

The ‘sat-nav’ has revolutionised the way we travel. From taxi drivers, couriers and the family car to airliners and tanks, satellite navigation devices are now fitted in almost every vehicle as it comes off the production line. While GPS systems certainly have their flaws, they have several uses too. Navigation is just one of the main uses of GPS but it is also employed as a source of time for GPS NTP time servers.

Being able to pin point locations from space has saved countless lives as well as making travelling to unfamiliar destinations trouble free. Satellite navigation relies on a constellation of satellites known as GNSS (Global Navigational Satellite Systems). Currently there is only one fully functioning GNSS in the world which is the Global Positioning System (GPS).

GPS is owned and run by the US military. The satellites broadcast two signals, one for the American military and one for civilian use. Originally, GPS was meant solely for the US armed forces but following an accidental shooting down of an airliner, the then President of the US Ronald Reagan opened the GPS system to the world’s population to prevent future tragedies.

GPS has a constellation of over 30 satellites. At any one time at least four of these satellites are overhead, which is the minimum number required for accurate navigation.

The GPS satellites each have onboard an atomic clock. Atomic clocks use the resonance of an atom (the vibration or frequency at particular energy states) which makes them highly accurate, not losing as much as a second in time over a million years. This incredible precision is what makes satellite navigation possible.

The satellites broadcast a signal from the onboard clock. This signal consists of the time and the position of the satellite. This signal is beamed back to earth where your car’s sat nav retrieves it. By working out how long this signal took to reach the car and triangulating four of these signals the computer in your GPS system will work out exactly where you are on the face of the world.  (Four signals are used because of elevation changes – on a ‘flat’ earth only three would be required).

GPS systems
can only work because of the highly precise accuracy of the atomic clocks. Because the signals are broadcast at the speed of light and accuracy of even a millisecond (a thousandth of a second) could alter the positioning calculations by 100 kilometres as light can travel nearly 100,00km each and every second –currently GPS systems are accurate to about five metres.

The atomic clocks onboard GPS systems are not just used for navigation either. Because atomic clocks are so accurate GPS makes a good source of time. NTP time servers use GPS signals to synchronize computers networks to. A NTP GPS server will receive the time signal from the GPS satellite then convert it to UTC (Coordinated Universal Time) and distribute it to all devices on a network providing highly accurate time synchronization.

The Atom and Time keeping

  |   By

Nuclear Weapons, computers, GPS, atomic clocks and carbon dating – there is much more to atoms than you think.

Since the beginning of the twentieth century mankind has been obsessed with atoms and the minutiae of our universe. Much of the first part of the last century, mankind became obsessed with harnessing the hidden power of the atom, revealed to us by the work of Albert Einstein and finalised by Robert Oppenheimer.

However, there has been much more to our exploration of the atom than just weapons. The studying of the atoms (quantum mechanics) has been at the root of most of our modern technologies such as computers and the Internet.  It is also in the forefront of chronology – the measuring of time.

The atom plays a key role in both timekeeping and time prediction. The atomic clock, which is utilised all over the world by computer networks using NTP servers and other technical systems such as air traffic control and satellite navigation.

Atomic clocks work by monitoring the extremely high frequency oscillations of individual atoms (traditionally caesium) that never changes at particular energy states. As caesium atoms resonate over a 9 billion times every second and never alters it its frequency it makes the m highly accurate (losing less than a second every 100 million years)

But atoms can also be used to work out not just accurate and precise time but they can also be utilised in establishing the age of objects. Carbon dating  is the name given to this method which measures the natural decay of carbon atoms. All of us are made primarily of carbon and like other elements carbon ‘decays’ over time where the atoms lose energy by emitting ionizing particles and radiation.

In some atoms such as uranium this happens very quickly, however, other atoms such as iron are highly stable and decay very, very slowly. Carbon, while it decays quicker than iron is still slow to lose energy but the energy loss is exact over time so by analysing carbon atoms and measuring their strength it can be quite accurately ascertained when the carbon originally formed.

Reported GPS Fears Should Not Affect Time Synchonisation

  |   By

Following recent media reports on the lack of investment in the USA’s Global Navigation Satellite System – GPS (Global Positioning System) and the potential failure of navigational receivers in recent years, time synchronisation specialists, Galleon Systems, would like to ensure all their customers that any failure of the GPS network will not affect current GPS NTP time servers.

Recent media reports following a study by the US government’s accountability office (GAO), that concluded mismanagement and a lack of investment meant some the current number of 31 operational satellites may fall to below 24 at times in 2011 and 2012 which would hamper its accuracy.

However, the UK’s National Physical Laboratory are confident that any potential problems of the GPS navigation facilities will not affect timing information utilised by GPS NTP servers.

A spokesman for the UK’s National Physical Laboratory confirmed that timing information should be unaffected by any potential future satellite failure.

“There is estimated to be a 20% risk that in 2011-2012 the number of satellites in the GPS constellation could drop below 24 at times.

“If that were to happen, there could be a slight reduction in the position accuracy of GPS receivers at some periods, and in particular they might take longer to acquire a fix in some locations when first powered up. However, even then the effect would be a degradation of performance, rather than complete failure to operate.

“A GPS timing receiver is unlikely to be affected significantly since, once it has determined its position when turned on, every satellite it observes provides it with useful timing information. A small reduction in the number of satellites in view should not degrade its performance much.”

MSF Outage 11 June NPL Maintenance

  |   By

The UK’s MSF signal broadcast from Anthorn, Cumbria and utilised by UK NTP server users is be turned off for a four hour period on 11 June for scheduled maintenance. The MSF 60 kHz time and frequency standard will be off between 10.00 and 14:00 BST (9:00 – 13:00 UTC).

Users of NTP time servers that utilise the MSF signal should be aware of the outage but shouldn’t panic. Most network time servers that use the Anthorn system should still function adequately and the lack of a timing signal for four hours should not create any synchronisation problems or clock drift.

However, any testing of time servers that utilise MSF should be conducted before or after the scheduled outage. Further information is available from NPL.

Any network time server users that require ultra-precise precision or are feel temporary loss of this signal could cause repercussions in their time synchronisation should seriously consider utilising the GPS signal as an additional means of receiving a time signal.

GPS is available literally anywhere on the planet (as long as there is a good clear view of the sky) and is never down due to outages.

For further information on GPS NTP server can be found here.

Computers, Communications, Atomic Clocks and the NTP Server

  |   By

Time synchronisation on computer networks is often conducted by the NTP server. NTP time servers do not generate any timing information themselves but are merely methods of communicating with an atomic clock.

The precision of an atomic clock is widely talked about. Many of them can maintain time to nanosecond precision (billionths of a second) which means they won’t drift beyond a second in accuracy in hundreds of millions of years.

However, what is less understood and talked about is why we need to have such accurate clocks, after-all the traditional methods of keeping time such as mechanical clocks, electronic watches and using the rotation of the Earth to keep track of the days has proved reliable for thousands of years.

However, the development of digital technology over recent years has been nearly solely reliant on the ultra high precision of an atomic clock. One of the most widely used applications for atomic clocks is in the communications industry.

For several years now telephone calls taken in most industrialized countries are now transmitted digitally. However, most telephone wires are simply copper cables (although many telephone companies are now investing in fibre optics) which can only transmit one packet of information at a time. Yet telephone wires have to carry many conversations down the same wires at the same time.

This is achieved by computers at the exchanges switching from one conversation to another thousands of times every second and all this has to be controlled by nano-second precision otherwise  the calls will become out of step and get jumbled – hence the need for. Atomic clocks; mobile phones, digital TV and Internet communications use similar technology.

The accuracy of atomic clocks is also the basis for satellite navigation such as GPS (global positioning system). GPS satellites contain an onboard atomic clock that generates and transmits a time signal. A GPS receiver will receive four of theses signals and use the timing information to work out how long the transmissions took to reach it and therefore the position of the receiver on Earth.

Current GPS systems are accurate to a few metres but to give an indication of how vital precision is, a one second drift of a GPS clock could see the GPS receiver be inaccurate by over 100 thousand miles (because of the  huge distances light and therefore transmissions take in one second).

Many of these technologies that depend on atomic clocks utilise NTP servers as the preferred way to communicate with atomic clocks making the NTP time server one of the most crucial pieces of equipment in the communication industries.

How to Synchronise Your PC to an Atomic Clock

  |   By

The world’s technologies have advanced dramatically over the last few decades with innovations likes the internet and satellite navigation having changed the way we live our lives.

Atomic clocks pay a key role in these technologies; their time signals are what are used by GPS receivers to plot location and many applications and transactions across the internet if it wasn’t for highly precise synchronisation.

In fact a global timescale has been developed that is based on the time told by atomic clocks. UTC (Coordinated Universal Time) ensures that computer networks across the globe can be synchronised to the exact same time.

Synchronising computers and networks to atomic clocks is relatively straight forward thanks in part to NTP (Network Time Protocol), a version of which is included in most operating systems and is also thanks to the number of public NTP servers that exist on the internet.

To synchronise a Windows PC to an atomic clock is done by simply double clocking the clock on the task bar and then configuring the Internet Time tab to a relevant NTP server. A list of public NTP servers can be found at the NTP pool website.

When configuring networks to UTC however, a public NTP server is not suitable as there are security issues about polling a time source outside the firewall. Public servers are also known as stratum 2 servers which means they receive the time from another device that gets it from an atomic clock. This indirect method means that there is often a compromise in accuracy, furthermore if the internet connection goes down or the time server site then the network will soon drift away from UTC.

A far more secure and stable method is to invest in a dedicated NTP time server. These devices receive a time signal directly from an atomic clock, either produced by a national physics lab like NIST or NPL via long wave radio or from GPS satellites.

A single dedicated NTP server will provide a stable, reliable and highly precise source of UTC and allow networks of hundreds and even thousands of devices to be synchronised to NTP.

Bringing Atomic Clock Precision to your Desktop

  |   By

Atomic clocks have been a huge influence on our modern lives with many of the technologies that have revolutionised the way we live our lives relying on their ultra precise time keeping abilities.

Atomic clocks are far different to other chronometers; a normal watch or clock will keep time fairly accurately but will lose second or two each day. An atomic clock on the other hand will not lose a second in millions of years.

In fact it is fair to say that an atomic clock doesn’t measure time but is the foundations we base our perceptions of time on. Let me explain, time, as Einstein demonstrated, is relative and the only constant in the universe is the speed of light (though a vacuum).

Measuring time with any real precision is therefore difficult as even the gravity on Earth skews time, slowing it down. It is also almost impossible to base time on any point of reference. Historically we have always used the revolution of the earth and reference to the celestial bodies as a basis for our time telling (24 hours in a day = one revolution of the Earth, 365 days = one revolution of the earth around the Sun etc).

Unfortunately the Earth’s rotation is not an accurate frame of reference to base our time keeping on. The earth slows down and speeds up in its revolution meaning some days are longer than others.

Atomic clocks
however, used the resonance of atoms (normally caesium) at particular energy states. As these atoms vibrate at exact frequencies (or an exact number of times) this can be used as a basis for telling time. So after the development of the atomic clock the second has been defined as over 9 billion resonance ’ticks’ of the caesium atom.

The ultra precise nature of atomic clocks is the basis for technologies such as satellite navigation (GPS), air traffic control and internet trading. It is possible to use the precise nature of atomic clocks to synchronise computer networks too. All that is needed is a NTP time server (Network Time Protocol).
NTP servers receive the time from atomic clocks via a broadcast signal or the GPS network they then distribute it amongst a network ensuring all devices have the exact same, ultra precise time.

The World in Perfect Synchronization

  |   By

Synchronization is something we are familiar with everyday of our lives. From driving down the highway to walking crowded street; we automatically adapt our behaviour to synchronize with those around us. We drive in the same direction or walk the same thoroughfares as other commuters as failing to do so would make our journey a lot more difficult (and dangerous).

When it comes to timing, synchronisation is even more important. Even in our day to day dealings we expect a reasonable amount of synchronisation from people. When a meeting starts at 10am we expect everybody to be there within a few minutes.

However, when it comes to computer transactions across a network, accuracy in synchronisation becomes even more important where accuracy to a few seconds is too inadequate and synchronisation to the millisecond becomes essential.

Computers use time for every transaction and process they do and you only have to think back to the furore caused by the millennium bug to appreciate the importance computer’s place on time. When there is not precise enough synchronisation then all sorts of errors and problems can occur, particularly with time sensitive transactions.

Its not just transactions that can fail without adequate synchronisation but time stamps are used in computer log files so if something goes wrong or if a malicious user has invaded (which is very easy to do without adequate synchronisation) it can take a long time to discover what went wrong and even longer to fix the problems.

A lack of synchronisation can also have other effects such as data loss or failed retrieval it can also leave a company defenceless in any potential legal argument as a badly or unsynchronised network can be impossible to audit.

Millisecond synchronisation is however, not the headache many administrators assume it is going to be. Many opt to take advantage of many of the online timeservers that are available on the internet but in doing so can generate more problems than it solves such as having to leave the UDP port open in the firewall (to allow the timing information through) not-to-mention no guaranteed level of accuracy from the public time server.

A better and simpler solution is to use a dedicated network time server that uses the protocol NTP (Network Time Protocol). A NTP time server will plug straight into a network and use the GPS (Global Positioning System) or specialist radio transmissions to receive the time direct from an atomic clock and distribute it amongst the network.