When Time Servers go Bad

  |   By

“Time is what prevents everything from happening at once,’ said eminent physicist John Wheeler. And when it comes to computers his words couldn’t be any more relevant.

Timestamps are the only method that a computer has to establish if an event has occurred, is meant to occur or shouldn’t be occurring just yet. For a home PC, the computer relies on the inbuilt clock that displays the time on the corner of your operating system, and for most home uses this is satisfactory enough.

However for computer networks that have to communicate with each other, relying in individual system clocks can cause untold problems:

All clocks drift, and computer clocks are no different and problems occur when two machines are drifting at different rates as the time does not match up. This poses a conundrum for a computer as it is unsure of which time to believe and time critical events can fail to occur and even simple tasks like sending an email can cause time confusion on a network.

For these reasons, time servers are commonly used to receive the time from an external source and distribute it around the network. Most of these devices use the protocol NTP (Network Time Protocol) which is designed to provide a method of synchronising time on a network.

However, time servers are only as good as the time source that they rely on and when there is a problem with that source, synchronisation will fail and the problems mentioned above can occur.

The most common cause for time server failure or inaccuracy is the reliance on internet based sources of time. These can neither be authenticated by NTP nor guaranteed to be accurate and they can also lead to security issues with firewall intrusion and other malicious attacks.

Ensuring the NTP time server continues to get a source of highly accurate time is fairly straight forward and is all a matter of choosing an accurate, reliable and secure time source.

In most parts of the world there are two methods that can provide a secure and reliable source of time:

  • GPS time signals
  • Radio referenced time signals

GPS signals are available anywhere on the planet and are based on GPS time which is generated by atomic clocks onboard the satellites.

Radio referenced signals like MSF and WWVB are broadcast on long wave from physics laboratories like NIST and NPL.

Choosing a Source of Time for an NTP Synchronization

  |   By

Accurate time is essential in the modern world of internet banking, online auctions and global finance. Any computer network that is involved in global communication needs to have an accurate source of the global timescale UTC (Coordinated Universal Time) to be able to talk to other networks.

Receiving UTC is simple enough. It is available from multiple sources but some are more reliable than others:

Internet Time Sources

The internet is awash with time sources. These vary in reliability and accuracy but some trusted organisations like NIST (National Institute of Standards and Time) and Microsoft. However, there are disadvantages with internet time sources:

Reliability – The demand for internet sources of UTC often means it can be difficult to access them

Accuracy – most internet time servers are stratum 2 devices which means they rely on a source of time themselves. Often errors can occur and many sources of time can be very inaccurate.

Security – Perhaps the biggest issue with internet time sources is the risk they pose to security. To receive a time stamp from across the internet the firewall needs to have an opening to allow the signals to pass through; this can lead to malicious users taking advantage.

Radio Referenced Time Servers.

A secure method of receiving UTC time stamps is available by using a NTP time server that can receive radio signals from labs like NIST and NPL (National Physical Laboratory. Many countries have these broadcasted time signals which are highly accurate, reliable and secure.

GPS Time servers

Another source for dedicated time servers is GPS. The big advantage of a GPS NTP time server is that the time source is available everywhere on the planet with a clear view of the sky. GPS time servers are also highly accurate, reliable and just as secure as radio referenced time servers.

Common Internet Time Synchronisation Issues

  |   By

Keeping the clock on a PC system synchronised is important for many systems, networks and users that need time accuracy for applications and transactions. Nearly everything on a modern computer system is time reliant so when synchronisation fails all sorts of issues can arise from data getting lost and debugging becoming near impossible.

There are several methods of synchronising a computer system’s clock but the majority of them rely on the time synchronisation protocol NTP (Network Time Protocol).

By far the most common method is to make use of the myriad of online NTP time servers that relay the UTC time (Coordinated Universal Time). However, there are many common issues in using internet based time servers – here are some of them:

Can’t access the Internet time server

A common occurrence with Internet time sources is the inability to access them. This can be caused by several reasons:

• Too much traffic trying to access the server
• Website is down
• Your connection is down

The time from the time server is innacuurate

Most online sources of time are what are known as stratum 2 time servers. This means they get their time from another time server (stratum 1) that it connected to an atomic clock (stratum 0). If there is an error with the stratum 1 device the stratum 2 device will be wrong (and every device that is trying to get the time from it).

The time server is leading to security problems with the firewall

Another common problem caused by the fact that all online time servers need access through your firewall. Unfortunately this gives the opportunity for malicious users to make use of this back door into your system.

Eliminating Time Server Issues

Internet time sources are neither guaranteed to be accurate, reliable or secure so for any serious time synchronisation requirements an external source of time should be used. NTP time servers that plug into a network and receive the time from GPS or radio sources are a much more secure and reliable alternative. These NTP servers are also highly secure as they do not operate across the Internet.

GPS as a Timing Reference for NTP servers

  |   By

The GPS system is familiar to most people. Many cars now have a GPS satellite navigation device in their cars but there is more to the Global Positioning System than just wayfinding.

The Global Positioning System is a constellation of over thirty satellites all spinning around the globe. The GPS satellite network has been designed so that at any point in time there is at least four satellites overhead – no matter where you are on the globe.

Onboard each GPS satellite there is a highly precise atomic clock and it is the information from this clock that is sent through the GPS transmissions which by triangulation (using the signal from multiple satellites) a satellite navigation receiver can work out your position.

But these ultra precise timing signals have another use, unbeknown to many users of GPS systems. Because the timing signals from the GPS atomic clocks are so precise, they make a good source of time for synchronising all sorts of technologies – from computer networks to traffic cameras.

To utilise the GPS timing signals, a GPS time server is often used. These devices use NTP (Network Time Protocol) to distribute the GPS timing source to all devices on the NTP network.

NTP regularly checks the time on all the systems on its network and adjusts it accordingly if it has drifted to what the original GPS timing source is.

As GPS is available anywhere on the planet it provides a really handy source of time for many technologies and applications ensuring that whatever is synchronised to the GPS timing source will remain as accurate as possible.

A single GPS NTP server can synchronize hundreds and thousands of devices including routers, PCs and other hardware ensuring the entire network is running perfectly coordinated time.

Technologies that rely on Atomic Clocks (Part 1)

  |   By

Atomic clocks are the most accurate timekeeping devices known to man. There accuracy is incomparable to other clocks and chronometers in that whilst even the most sophisticated electronic clock will drift by a second every week or two, the most modern atomic clocks can keep running for thousands of years and not lose even a fraction of a second.

The accuracy of an atomic clock is down to what they use as their basis for time measurement. Instead of relying on an electronic current running through a crystal like an electronic clock, an atomic clock uses the hyperfine transition of an atom in two energy states. Whilst this may sound complicated, it is just an unfaltering reverberation that ‘ticks’ over 9 billion times each second, every second.

But why such accuracy really necessary and what technologies are atomic clocks employed in?

It is by examining the technologies that utilise atomic clocks that we can see why such high levels of accuracy are required.

GPS – Satellite navigation

Satellite navigation is a huge industry now. Once just a technology for the military and aviators, GPS satellite navigation is now used by road users across the globe. However, the navigational information provided by satellite navigation systems like GPS is solely reliant on the accuracy of atomic clocks.

GPS works by triangulating several timing signals that are deployed from atomic clocks onboard the GPS satellites. By working out when the timing signal was released from the satellite the satellite navigational receiver can just how far away it is from the satellite and by using multiple signals calculate where it is in the world.

Because of these timing signals travel at the speed of light, just one second inaccuracy within the timing signals could lead to the positing information being thousands of miles out. It is testament to the accuracy of GPS atomic clocks that currently a satellite navigation receiver is accurate to within five metres.

Synchronizing a Computer Network with a Dedicated Network Time Server

  |   By

Synchronization is vital for most computer networks. Timestamps are the only reference a computer can use to analyse when and if processes or applications are completed. Synchronized timestamps are also vital for security, debugging and error logging.

Failure to keep a network adequately synchronized can lead to all sorts of problems. Applications fail to commence, time sensitive transactions will fail and errors and data loss will become commonplace.

However, ensuring synchronization no matter the size of network is straight forward and not costly, thank to the dedicated network time server and the time protocol NTP.

Network Time Protocol (NTP)

NTP has been around even longer than the internet but is the most widely used synchronization protocol available. NTP is free to use and makes synchronization very straight forward. It works by taking a single time source (or multiple ones) and distributes it amongst the network. It will maintain high levels of accuracy even when it loses the original time signal and can make judgements on how accurate each time reference.

NTP Time Server

These come in several forms. Firstly there are a number of virtual time servers across the internet that distributes time free of charge. However, as they are internet based a network is taking a risk leaving a firewall port open for this time communication. Also there is no control over the time signal so if it goes down (or becomes unstable or wholly inaccurate) your network can be left without adequate synchronization.

Dedicated NTP time servers use GPS or radio references to receive the time. This is far more secure and as GPS and radio signals like WWVB (from NIST) are generated by atomic clocks there accuracy is second to none.

Because the NTP protocol is hierarchical it also means that only one dedicated time server needs to be used for a network, no matter the size, as other devices on the network can act as time servers after having rece9ved the time from the primary NTP server.

MSF Downtime on March 11

  |   By

The National Physical Laboratory has announced scheduled maintenance this week (Thursday) meaning the MSF60kHz time and frequency signal will be temporarily turned off to allow the maintenance to be conducted in safety at the Anthorn radio Station in Cumbria.

Normally these scheduled maintenance periods only last a few hours and should not cause any disturbance to anybody relying on the MSF signal for timing applications.
NTP (Network Time Protocol) is well suited to these temporary losses of signal and little if no drift should be experienced by any NTP time server user.

However, there are some high level users of network time servers or may have concerns on the accuracy of their technology during these scheduled periods of no signal. There is another solution for ensuring a continuous, secure and equally accurate time signal is always being used.

GPS, most commonly used for navigation and wayfinding it actually an atomic clock based technology. Each of the GPS satellites broadcasts a signal from their onboard atomic clock which is used by satellite navigation devices that work out the location through triangulation.

These GPS signals can also be received by a GPS NTP time server. Just as MSF or other radio signal time servers receive the external signal from the Anthorn transmitter, GPS time servers can receive this accurate and external signal from the satellites.

Unlike the radio broadcasts, GPS should never go down although it can sometimes be impractical to receive the signal as a GPS antenna needs a clear view of the sky and therefore should preferably be on the roof.

For those wanting to make doubly sure there is never a period when a signal is not being received by the NTP server, a dual time server can be used. These pick up both radio and GPS transmissions and the onboard NTP daemon calculates the most accurate time from them both.

Network Time Protocol and Computer Time Synchronization

  |   By

Ask any network administrator or IT engineer and ask them how important network time synchronization is and you’ll normally get the same answer – very.

Time is used in almost all aspects of computing for logging when events have happened. In fact timestamps are the only reference a computer can use to keep tracks of tasks it has done and those that it has yet to do.

When networks are unsynchronized the result can be a real headache for anybody tasked with debugging them. Data can be often lost, applications fail to commence, error logging is next to impossible, not to mention the security vulnerabilities that can result if there is no synchronized network time.

NTP (Network Time Protocol) is the leading time synchronisation application having been around since the 1980’s. It has been constantly developed and is used by virtually every computer network that requires accurate time.

Most operating systems have a version of NTP already installed and using it to synchronise a single computer is relatively straight forward by using the options in the clock settings or task bar.

However, by using the inbuilt NTP application or daemon on a computer will result in the device using a source of internet time as a timing reference. This is all well and good for single desk top machines but on a network a more secure solution is required.

It is vital on any computer network that there are no vulnerabilities in the firewall which can lead to attacks from malicious users. Keeping a port open to communicate with an internet timing source is one method an attacker can use to enter a network.

Fortunately there are alternatives to using the internet as a timing source. Atomic clock time signals can be received using long wave radio or GPS transmissions.

Dedicated NTP time server devices are available that make the process of time synchronisation extremely easy as the NTP servers receives the time (externally to the firewall) and can then distribute to all machines on a network – this is done securely and accurately with most networks synchronised to an NTP server working to within a few milliseconds of each other.

The Effect of Solar Flares on GPS

  |   By

Forthcoming space weather may affect GPS devices including satellite navigation and NTP GPS time servers.

Whilst many of us have had to cope with some extreme weather last winter, further storms are on their way – this time from space.

Solar flares are a regular occurrence on the surface of the sun. Whilst scientists are not completely sure what causes them we know two things about solar flares: – they are cyclical – and are related to sunspot activity.

For that last eleven years the sun’s sunspot activity – small dark depressions that appear on the surface of the sun – has been very minimal. But this eleven year cycle has come to an end and there has been a rise in sun spots at the end of last year meaning 2010 will be a bumper year for both sunspots and solar flares.

But there is no need to worry about becoming toasted by solar flares as these bursts of hot gases that flare from the sun never get far enough to reach the Earth, however, they can effect us in different ways.

Solar flares are bursts of energy and as such emit radiation and high energy particles. On earth, we are protected by these blasts of energy and radiation by the earth’s magnetic field and ionosphere, however, satellite communications are not and this can lead to trouble.

Whilst the effect of solar flare radiation is very weak, it can slow down and reflect radio waves as they travel through the ionosphere towards Earth. This interference can cause GPS satellites in particular extreme problems as they are reliant on accuracy to provide navigational information.

While the effects of solar flares are mild, it is possible GPS devices will encounter brief periods of no signal and also the problem of inaccurate signals meaning positing information may become unreliable.

This will not just affect navigation either as the GPS system is used by hundreds and thousands of computer networks as a source of reliable time.

Whilst most dedicated GPS time servers should be able to cope with periods of instability without losing precision, for worried network administrators not wanting to go into work to find their systems have crashed because of a lack of synchronisation may want to consider using a radio referenced Network time server that uses broadcast transmission such as MSF or WVBB.

Dual NTP time servers (Network Time Protocol) are also available that can receive both radio and GPS, ensuring a source of time is always constantly available.

Choosing a Time Server for your Network

  |   By

Any network administrator will tell you how important time synchronization is for a modern computer network. Computers rely on the time for nearly everything, especially in today’s age of online trading and global communication where accuracy is essential.

Failing to ensure that computers are accurately synced together could lead to all manner of problems: data loss, security vulnerabilities, unable to conduct time sensitive transactions and difficulties debugging can all be caused by a lack of, or not adequate enough, time synchronization.

But ensuring every computer on a network has the exact same time is simple thanks to two technologies: the atomic clock and the NTP server (Network Time Protocol).

Atomic clocks are extremely accurate chronometers. They can keep time and not drift by as much of a second in thousands of years and it is this accuracy that has made possible technologies and applications such as satellite navigation, online trading and GPS.

Time synchronization for computer networks is controlled by the network time server, commonly referred to as the NTP server after the time synchronization protocol they use, Network Time Protocol.
When it comes to choosing a time server, there are really only two real type – the radio reference NTP time server and the GPS NTP time server.

Radio reference time servers receive the time from long wave transmission broadcast by physics laboratories like NIST in North America or NPL in the UK. These transmissions can often be picked up throughout the country of origin (and beyond) although local topography and interference from other electrical devices can interfere with the signal.

GPS time servers, on the other hand, use the satellite navigation signal transmitted from GPS satellites. The GPS transmissions are generated by atomic clocks onboard the satellites so they are a highly accurate source of time just like the atomic clock generated time broadcast by the physics laboratories.

Apart from the disadvantage of having to have a roof top antenna (GPS works by line of sight so a clear view of the sky is essential), GPS is obtainable literally everywhere on the planet.

As both types of time server can provide an accurate source of reliable time the decision of which type of time server should be based on the availability of long wave signals or whether it is possible to install a rooftop GPS antenna.