Category: ntp server

Configuring a Network to use a NTP Server Part two: Distributing the Time

  |   By

NTP (Network Time Protocol) is the protocol designed for time distribution amongst a network. NTP is hierarchical. It organises a network into strata, which are the distance from a clock source and the device.

A dedicated NTP server that receives the time from a UTC source such as GPS or the national time and frequency signals is regarded as a stratum 1 device. Any device that is connected to a NTP server becomes a stratum 2 device and devices farther down the chain become stratum 2, 3 and so on.

Stratum layers exist to prevent cyclical dependencies in the hierarchy. But the stratum level is not an indication of quality or reliability.

NTP checks the time on all devices on the network it then adjusts the time according to how much drift it discovers. Yet NTP goes further than just checking the time on a the reference clock, the NTP program exchanges time information by packets (blocks of data) but refuses to believe the time it is told until several exchanges have taken place, each passing a set of tests known asprotocol specifications. It often takes about five good samples until a NTP server is accepted as a timing source.

NTP uses timestamps to represent the current time the day. As time is linear, each timestamp is always greater than the previous one. NTP timestamps are in two formats but they relay the seconds from a set point in time (known as the prime epoch, set at 00:00 1 January 1900 for UTC) The NTP algorithm then uses this timestamp to determine the amount to advance or retreat the system or network clock.

NTP analyses the timestamp values including the frequency of errors and the stability. A NTP server will maintain an estimate of the quality of both its reference clocks and itself.

Reasons for Atomic Clock Timing

  |   By

Atomic clocks have, unbeknown to most people, revolutionised our technology. Many of the ways we trade, communicate and travel are now solely dependent on timing from atomic clock sources.

A global community often means that we have to communicate with people on other areas of the world and in other time zones. For this purpose a universal time zone was developed, known as UTC (Coordinated Universal Time), which is based on the time told by atomic clocks.

Atomic clocks are incredibly accurate, losing only a second in every hundred million years, which is staggering when you compare it to digital clocks that will lose that much time in a week.

But why do we need such accuracy in timekeeping? Much of the technology we employ in modern times is designed for global communication. The Internet is a good example. So much trade is done across continents in fields such as the stock exchange, seat reservation and online auctioning that exact time is crucial. Imagine you are bidding for an item on the Internet and you place a bid a few seconds before the end, the last and highest bid, would it be fair to lose the item because the clock on your ISP was a little fast and the computer therefore thought the bidding was over. Or what about seat reservation; if two people on different sides of the globe book a seat at the same time, who gets the seat. This is why UTC is vital for the internet.

Other technologies too such as global positioning and air traffic control are reliant on atomic clocks to provide accuracy (and in the case of air traffic is paramount for safety). Even traffic lights and speed cameras have to be calibrated with atomic clocks otherwise speeding ticket may not be valid as they could be questioned in court.

For computer systems NTP time servers are the preferred method for receiving and distributing a source of UTC time.

Time Server Basic Questions Answered

  |   By

What is a time server?

A time server is a device that receives and distributes a single time source across a computer network for the purposes of time synchronization. These devices are often referred to as a NTP server, NTP time server, network time server or dedicated time server.

And NTP?

NTP – Network Time Protocol is a set of software instructions designed to transfer and synchronize time across LANs (Local Area Network) or WANS (Wider Area Network). NTP is one of the oldest known protocols in use today and is by far the most commonly used time synchronization application.

What timescale should I use?

Coordinated Universal Time (UTC) is a global timescale based on the time told by atomic clocks. UTC doesn’t take into account time zones and is therefore ideal for network applications as in principle by synchronizing a network to UTC you are in effect synchronizing it to every other network that utilises UTC.

Where does a time server receive the time from?

A time server can utilise the time from anywhere such as a wrist watch or wall clock. However, any sensible network administrator would opt to use a source of UTC time to ensure the network is as accurate as possible. UTC is available from several ready sources. The most used is perhaps the internet. There are many ‘time servers’ on the internet that distribute UTC time. Unfortunately, many are not at all accurate an in using an internet time source you could be leaving the network vulnerable as malicious users can take advantage of the open port in the firewall where the timing information flows.

It is far better to use a dedicated NTP time server that receives the UTC time signal external to the network and firewall. The best methods for doing this is to either use the GPS signals transmitted from space or the national time and frequency transmissions broadcast by several countries in long wave.

Perfect Time Synchronization for Windows

  |   By

Most Windows operating systems have an integrated time synchronisation service, installed by default that can synchronise the machine or indeed a network. However, for security reasons, it is highly recommended by Microsoft, amongst others, that an external time source is used.

NTP time servers
securely and accurately receive the UTC time signal from the GPS network or the WWVB radio transmissions (or European alternatives).  NTP time servers can synchronize a single Windows machine or an entire network to within fractions of a second of the correct UTC time (Coordinated Universal Time).

A NTP time server provides precise timing information 24 hours-a-day, 365 days-a-year anywhere on the entire globe. A dedicated NTP time server is the only secure, safe and reliable method of synchronizing a computer network to UTC (Coordinated Universal Time). External to the firewall, an NTP time server does not leave a computer system vulnerable to malicious attacks unlike Internet timing sources via the TCP-IP port.

A NTP time server is not only secure, it receives a UTC time signal direct from atomic clocks unlike Internet timing sources which are really time servers themselves. NTP servers and other time synchronization tools can synchronize entire networks, single PCs, routers and a whole host of other devices. Using either GPS or the North American WWVB signal, a dedicated NTP time server from will ensure all your devices are running to within a fraction of UTC time.

A NTP time server will:

•    Increase network security
•    Prevent data loss
•    Enable logging and tracking of errors or security breaches
•    Reduce confusion in shared files
•    Prevent errors in billing systems and time sensitive transactions
•    Can be used to provide incontestable evidence in legal and financial disputes

Using a NTP Server in your Network

  |   By

The Network Time Protocol server is used in computer networks all over the world. It keeps an entire network’s systems and devices synchronised to the same time, normally a source of UTC (Coordinated Universal Time).

But is a NTP time server a necessary requirement and can your computer network survive without one?  The short answer is perhaps yes, a computer network can survive without a NTP server but the consequences can be dramatic.

Computers are meant to make our lives easier but any network administrator will tell you they can cause an awful amount of difficulty when they inevitably go wrong and without adequate time synchronisation, identifying an error and putting it right can be nearly impossible.

Computers use the time in the form of a timestamp as the only reference they have to distinguish between two events. Whilst computers and networks will still function without adequate synchronisation they are extremely vulnerable. Not only is locating and correcting errors extremely difficult if machines are not synchronised the network will be vulnerable to malicious users and viral software that can take advantage of it.

Furthermore, failing to synchronise to UTC can cause problems if the network is to communicate with other networks that are synchronised. Any time sensitive transactions could fail and the system could be open to potential fraud or other legal implications as proving the time of a transaction could be near impossible.

NTP servers are easy to install and receive the UTC time signal from either long wave transmissions or the GPS satellite network which they then distribute amongst the network’s machines. As a dedicated NTP time server operates externally to the network firewall it does so without compromising security.

Differences in Time

  |   By

We are all aware of the differences in time zones. Anybody that has travelled across the Atlantic or Pacific will feel the effects of jet lag caused by having to adjust our own internal body clocks. In some countries, such as the USA, several different time zones exist in the one country meaning there are several hours difference in time from the East Coast to the West.

This difference in time zones can cause confusion although for residents of countries that straddle more than one time zone they soon adapt to the situation. However, there are more timescales and differences in time than just time zones.

Different time standards have been developed for decades to cope with time zone differences and to allow for a single time standard that the whole world can synchronize too. Unfortunately since the first time standards were developed such as British Railway Time and Greenwich Mean Time, other standards have had to be developed to cope with different applications.

One of the problem of developing a time standard is choosing what to base it on. Traditionally, all systems of time have been developed on the rotation of the Earth (24 hours). However, following the development of atomic clocks, it was soon discovered that no two days are exactly the same length and quite often they can fall short of the expected 24 hours.

New time standards where then developed based on Atomic clocks as they proved to be far more reliable and accurate than using the Earth’s rotation as a starting point. Here is a list of some of the most common time standards in use. They are divided into two types, those that are based on Earth’s rotation and those that are based on atomic clocks:

Time standards based on Earth’s rotation
True solar time is based on the solar day – is the period between one solar noon and the next.

Sidereal time is based on the stars. A sidereal day is the time it takes Earth to make one revolution with respect to the stars (not the sun).

Greenwich Mean Time (GMT) based upon when the sun is highest (noon) above the prime meridian (often called the Greenwich meridian). GMT used to be an international time standard before the advent of precise atomic clocks.

Time standards based on atomic clocks

International Atomic Time (TAI) is the international time standard from which the time standards below, including UTC, are calculated. TAI is based on a constellation of atomic clocks from all over the world.

GPS Time Also based on TAI, GPS time is the time told by atomic clocks aboard GPS satellites. Originally the same as UTC, GPS time is currently 17 seconds (precisely) behind as 17 leap seconds have been added to UTC since the satellites were launched.
Coordinated Universal Time (UTC) is based on both atomic time and GMT. Additional Leap seconds are added to UTC to counter the imprecision of Earth’s rotation but the time is derived from TAI making it as accurate.

UTC is the true commercial timescale. Computer systems all over the world synchronize to UTC using NTP time servers. These dedicated devices receive the time from an atomic clock (either by GPS or specialist radio transmissions from organisations like NIST or NPL).

Synchronizing the Time on your Computer

  |   By

Keeping accurate time is essential for many applications and dedicated NTP time servers make the job easy for network administrators. These devices receive an external time signal, often from GPS or sometimes from broadcast signals put out by organisations such as NIST, NPL and PTB (national physics labs from US, UK and Germany).

Synchronization with a NTP time server is made all the more easier thanks to NTP (network time protocol) this software protocol distributes the time source by constantly checking the time on all devices and adjusting any drift to match the time signal that is received.

Time synchronization is not just the concern of large networks. Even single machines and routers ought to be synchronised because at the very least it will help keep a system secure and make error detection a whole lot easier.

Fortunately, most versions of Windows contain a form of NTP. Often it is a simplified version but it is enough to allow a PC to be synchronized with the global time scale UTC (Coordinated Universal Time). On most Windows machines this is relatively easy to do and can be achieved by double clicking on the clock icon in the task bar then selecting a time provider in the internet time tab.

These time sources are internet based meaning that they are external to the firewall so a UDP port has to be left open to allow the time signal to enter. This can cause some security issues so for those wanting perfect synchronization without any security issues then the best solution is to invest in a dedicated time server. These need not be expensive and as they receive an atomic clock time signal externally then here is no breach in the firewall leaving your network secure.

The Possibility of Time Travel

  |   By

Exploring the possibilities of time travel including: Time paradoxes, worm holes, 4 dimesnsional space, atomic clocks and NTP servers

Time travel has always been a much loved concept for science fiction writers. From HG Wells’ Time Machine to Back to the Future, travelling forwards or backwards in time has captivated audiences for centuries. However, thanks to the work of modern thinkers like Einstein, it appears that time travel is much a possibility of science fact as it is fiction.

Time travel is not only possible but we do it all the time. Every second that passes is a second further into the future so we are all travelling forward in time. However we think if time travel we imagine a machine that transports individuals hundreds or thousands of years in to the future or past so is that possible.

Well, thanks to Einstein’s theories of general and special relativity, time ravel is certainly possible. We know thanks to the development of atomic clocks that Einstein’s theories about speed and gravity affecting the passage of time is correct. Einstein suggested that gravity would warp space-time (the term he gave to four dimensional space that includes directions plus time) and this has been tested. In fact modern atomic clocks can pick out the minute differences in the passage of time every subsequent inch above the earth’s surface as time speeds up as the effect of the earth’ s gravity weakens.

Einstein predicted speed too would affect time in what he described as time dilation. For any observer travelling close to the speed of light a journey that to an outsider may have taken thousands of years would have passed within seconds. Time dilation means that travelling hundreds of years into the future in a matter of seconds is certainly possible. However, would it be possible to get back again?

This is where many scientists are divided. Strictly speaking theoretical properties of space time do allow for this, although for any travelling back in time a worm hole would have to be created or found. A worm hole is a theoretical link between two parts of space where a traveller could enter one end and appear somewhere completely different at the other end this may be another part of the universe or indeed another point in time.

However, critics of the possibility of time travel point out that because travellers from the future have never visited us that probably means that time travel will never be possible. They also point out the any travelling backwards in time could create paradoxes (what would happen to you if you were mean enough to go back in time and kill your grandparents).

However, time paradoxes exist now. Many computer networks are not synchronised which can lead to errors, loss of data or paradoxes like emails being sent before they were received. To avoid any time crisis it is important for all computer networks to be perfectly synchronised. The best and most accurate method of doing this is to use a NTP time server that receives the time from an atomic clock.

Germans Enter Race to Build the Worlds Most Accurate Clock

  |   By

Following the success of Danish researchers working in conjunction with NIST (National Institute for Standards and Time), who unveiled the world’s most accurate atomic clock earlier this year; German scientist have entered the race to build the world’s most precise timepiece.

Researchers at the Physikalisch-Technische Bundesanstalt (PTB) in Germany are using use new methods of spectroscopy to investigate atomic and molecular systems and hope to develop a clock based around a single aluminium atom.

Most atomic clocks used for satellite navigation (GPS), as references for computer network NTP servers and air traffic control have traditionally been based on the atom caesium. However, the next generation of atomic clocks, such as the one unveiled by NIST which is claimed to be accurate to within a second every 300 million years, uses the atoms from other materials such as strontium which scientists claim can be potentially more accurate than caesium.

Researchers at PTB have opted to use single aluminium atoms and believe they are on the way to developing the most accurate clock ever and believe there is huge potential for such a device to help us understand some of the more complicated aspects of physics.

The current crop of atomic clocks allow technologies such as satellite navigation, air traffic control and network time synchronisation using NTP servers but it is believed the increases accuracy of the next generation of atomic clocks could be used to reveal some of the more enigmatic qualities of quantum science such as string theory.

Researchers claim the new clocks will provide such accuracy they will even be able to measure the minute differences in gravity to within each centimetre above sea-level.

Worlds Most Famous Clock Reaches 150

  |   By

It’s one of the world’s most iconic land marks. Standing proudly over the Houses of Parliament, Big Ben celebrates its 150th birthday. Yet despite living in an age of atomic clocks and NTP time servers, it is one of the most used timepieces in the world with hundreds of thousands of Londoners relying on its chimes to set their watches to.

Big Ben is actually the name of the main bell inside the clock that creates the quarter hourly chimes but the bell didn’t start chiming when the clock was first built. The clock began keeping time on 31 May 1859, while the bell didn’t strike for the first time until July 11.

Some claim the twelve tonne bell was named after Sir Benjamin Hall the Chief Commissioner of Works who worked on the clock project (and was said to be a man of great girth). Others claim the bell was named after heavyweight boxer Ben Caunt who fought under the moniker Big Ben.

The five-tonne clock mechanism works like a giant wristwatch and is wound three times a week. Its accuracy if in tuned by adding or removing old pennies on the pendulum which is quite far removed from the accuracy that modern atomic clocks and NTP server systems generate with near nanosecond precision.

While Big Ben is trusted by tens of thousands of Londoners to provide accurate time, the modern atomic clock is used by millions of us every day without realising it. Atomic clocks are the basis for the GPS satellite navigation systems we have in our cars they also keep the internet synchronised by way of the NTP time server (Network Time Protocol).

Any computer network can be synchronised to an atomic clock by using a dedicated NTP server. These devices receive the time from an atomic clock, either via the GPS system or specialist radio transmissions.