Category: ntp server

Time Server Top Tips for Time Synchronisation

  |   By

Time synchronisation is an integral part of modern computer networking particularly with the Internet and online communication having become so dominant.

Communicating with machines across the globe requires exact time synchronisation otherwise many of the online tasks we take for granted would not be possible. Time in the form of timestamps is the only form of reference a computer has to identify the order of events. So with time sensitive transactions time synchronisation is pivotal.

Here are some tips to ensure your network is running precise and accurate time as possible:

NTP (Network Time Protocol) is the world’s leading time synchronisation software. There are other time protocols but NTP is the most widely used and best supported.

Most computer networks across the globe are synchronised to UTC (Coordinated Universal Time). This is a global timescale based on the time told by atomic clocks. Always use a UTC source to synchronise too.

Always use an external hardware source as a timing reference as time sources from the Internet can not be authenticated. Authentication is a security measure used by NTP to ensure a timing reference is coming from where it says it is from. Also using an Internet timing source means that the reference is outside your networks firewall, this can cause added security risks.

Dedicated time servers can receive UTC signals from radio transmissions and the GPs network. These offer the most secure, accurate and reliable method of receiving a UTC time reference.

Networks based in Britain, Germany, the USA and Japan have access to long-wave time and frequency transmissions that are broadcast by national physics labs. These broadcasts are accurate and reliable and often the dedicated time servers that receive them are less expensive than their GPS alternatives.

GPS is available everywhere on the globe as a source of UTC time. GPS antennas do good a good 180 degree view of the sky and require a good 48 hours to receive a stable ‘locked’ satellite fix.

Arrange your network into strata. Stratum levels signify the distance from a timing source. A stratum 0 server is an atomic clock while a stratum 1 server is a dedicated time server that receives the time from a stratum 0 source. Stratum 2 devices are machines that receive their timing source from a stratum 1 server but stratum 2 devices can also be used to pass on timing information. By ensuring you have enough stratum levels you will avoid congestion in your network and time server.

UTC Radio References from Around the World

  |   By

UTC (Coordinated Universal Time) is the global civil timescale used by millions of people, businesses and authorities across the globe. UTC is based on the time told by caesium atomic clocks. These clocks are the most reliably accurate chronometers on Earth, able to maintain accurate time for several millions of years whilst neither losing nor gaining a second.

Unfortunately caesium clocks are far too expensive and delicate pieces of machinery to make it practical for us all to have one but fortunately the time that they tell is transmitted by several countries. These nation’s national physics laboratories tend to broadcast the UTC time from these clocks by long-wave.

In the UK the 60 kHz transmission is broadcast by the National Physical Laboratory from a transmitter in Anthorn in Cumbria (it was based in Rugby until 2007). NPL constantly maintain the transmissions and assess its accuracy. Whilst the MSF signal is a British based transmission is possible to receive the signal in some parts of northern Europe and Scandinavia.

However, in mainland Europe, the strongest time and frequency signal is the German transmission broadcast from Frankfurt in Germany. This signal known as the DCF is controlled and maintained by the German National Physics Laboratory. While Switzerland also has its own time and frequency signal, the German DCF signal is by far the most widely used in Europe.

In the USA a similar system is maintained by NIST (National Institute for Standards and Time) and is broadcast from Fort Collins, Colorado. This signal is known as WWVB and is available in most parts of Northern America (including Canada).

Japan maintains its own timing broadcast (JJY) also which is popular in the south pacific and several other countries (such as France) maintain their own signals too although these tend to have only minor coverage.

All these times signals operate in a similar fashion. The strength of the signal is either reduced by between 6 and 10 dB or switched off for a specific amount of time before being restored at the start of each second. The amount of time the signal is reduced indicates a stream of binary numbers with positioning markers.
The signals operate on a 60 kHz frequency and carry a time and date code which relays the following information in binary format: Year, month, day of month,  day of week,  hour,  minute,  DUT1 (the difference between UTC and UT1 which is based on the Earths rotation). The signals also relay information about local time such as British Summer Time.

Windows Time Server Synchronising Your Network With NTP

  |   By

Nearly all a computers activity involves time whether logging a timestamp for when a network was accessed to sending an email, knowing the time is crucial for computer applications.

All computers have an on-board clock that provides time and date information. These Real Time Clock (RTC) chips are battery backed so that even when off they can maintain time, however these RTC chips are mass produced and cannot maintain accurate time and tend to drift.

For many applications this can be quite adequate, however if a computer is on a network and needs to talk to other machines, failing to be synchonised to the correct time can mean many time-sensitive transactions can not be completed and can even leave the network open to security threats.

All versions of Windows Server since 2000 have included a time synchronization facility, called Windows Time Service (w32time.exe), built into the operating system. This can be configured to operate as a network time server synchronizing all machines to a specific time source.

Windows Time Service uses a version of NTP (Network Time Protocol), normally a simplified version, of the Internet protocol which is designed to synchronise machines on a network, NTP is also the standard for which most computer networks across the global use to synchronise with.

Choosing the correct time source is vitally important. Most networks are synchronized to UTC (Coordinated Universal Time) source. UTC is a global standardized time based on atomic clocks which are the most accurate time sources.

UTC can be obtained over the Internet from such places as (us Naval Observatory) or (Microsoft) but it must be noted that internet time sources can not be authenticated which can leave a system open to abuse and Microsoft and others advise using an external hardware source as a reference clock such as a specialized NTP server.

NTP servers receive their time source from either a specialist radio transmission from national physics laboratories which broadcast UTC time taken from an atomic clock source or by the GPS network which also relays UTC as a consequence of needing it to pin point locations.

NTP can maintain time over the public Internet to within 1/100th of a second (10 milliseconds) and can perform even better over LANs.

Receiving the Time with Time Servers and the MSF transmitter

  |   By

MSF is the name given to the dedicated time broadcast provided by the National Physical Laboratory in the UK, It is an accurate and reliable source of UK civil time, based on the time scale UTC (Coordinated Universal Time).

MSF is used throughout the UK and indeed other parts of Europe to receive a UTC time source which can be used by radio clocks and to synchronise computer networks by using a NTP time server.

It is available 24 hours a day across the whole of the UK although in some areas the signal can be weaker and it is susceptible to interference and local topography. The signal operates on a frequency of 60 kHz and carries a time and date code which relays the following information in binary format: Year, month, day of month,  day of week,  hour,  minute,  British Summer Time (in effect or imminent) and DUT1 (the difference between UTC and UT1 which is based on the Earths rotation)

The MSF signal is transmitted from Anthorn Radio Station in Cumbria but was only recently moved there after residing in Rugby, Warwickshire since it was started in the 1960’s. The signal’s carrier frequency is at 60 kHz, controlled by caesium atomic clocks at the radio station.

Caesium atomic clocks are the most reliably accurate atomic clocks anywhere, neither losing nor gaining a second in several millions of years.

To receive the MSF signal simple radio clocks can be used to display the exact UTC time or alternatively MSF referenced time servers can receive the long-wave transmission and distribute the timing information around computer networks using NTP (Network Time Protocol).

The only real alternative to the MSF signal in the UK is to use the onboard caesium clocks of the GPS network (Global Positioning System) that relay accurate time information that can be used as a UTC time source.

Six Reasons why you need a Dedicated Network Time Server!

  |   By

Having inaccurate time or running a network that is not synchronised can leave a computer system vulnerable to security threats and even fraud. Timestamps are the only point of reference for a computer to track applications and events. If these are inaccurate all sorts of problems can occur such as emails arriving before they were sent. It also makes possible such time sensitive transactions as e-commerce, online reservation and trading in stocks and share where exact timing with a network time server is essential and prices can fall or rise by millions in a second.

Failure to synchronise a computer network can allow hackers and malicious uses the opportunity to get at your system, even fraudsters can take advantage. Even those machines that are synchronised can fall victim, especially when the use the Internet as a timing reference which allows an open door for malicious users to inject a virus into your network. Using Radio or GPS atomic clocks provide accurate time behind your firewall maintaining you security.

NTP Time Servers ensure that all networked computers are synchronized automatically to the accurate time and date, now and in the future, automatically updating the network during daylight saving and leap seconds.

If computer data is ever to be used in a court of law then it essential that the information comes from a network that is synchronised. If the system is not then the evidence may be inadmissible.

Happy users:
Stop users complaining about incorrect time on their workstations

You have control of the configuration. For example you can automatically changes the time forward and back each Spring and Autumn for daylight saving time or set your server time to be locked to UTC time only or any time zone you choose.

NTP Time Server Frequently Asked Questions

  |   By

Q. What is NTP?
A. NTP – Network Time Protocol is an Internet protocol for time synchronisation, whilst other time synchronisation protocols are available NTP is by far the most widely used having been around since the mid 1980’s when the Internet was still in its infancy.

Q. What is UTC?
A.  UTC – Coordinated Universal Time is a global timescale based on the time told by atomic clocks. Because these clocks are so accurate every year or so ‘leap seconds’ have to be added as UTC is even more accurate than the Earth’s rotation which slows and speeds up thanks to the Moon’s gravity.

Q. What is a Network Time Server?
A. A network time server also known as a NTP time server is a network device that receives a UTC time signal and then distributes it among the other devices on a network. The time protocol NTP then ensures that all machines are kept synchronised to that time.

Q. Where does a network time server receive a UTC time from?
A. There are several sources where a UTC time reference can be taken. The Internet is the most obvious with hundreds of different time servers relaying their UTC time signals. However these are notoriously inaccurate depending on many variable the Internet is also not a secure source and not suitable for any computer network where security issues are a concern. The other methods that provide a more accurate, secure and reliable source of UTC time is to either use the transmissions of the GPS (global positioning system) network or the national time and frequency transmissions broadcast on long-wave.

Q. Can I receive a radio time signal from anywhere?
A. Unfortunately not. Only certain countries have a time signal broadcast from their national physics laboratories and these signals are finite and vulnerable to interference. In the USA the signal is broadcast from Colorado and is known as WWVB, in the UK it is broadcast from Cumbria and is called MSF. Similar systems exist in Germany, Japan, France and Switzerland.

Q. What about the GPS signal?
A. A satellite navigation system relies on the time signals from the onboard atomic clocks in the GPS satellites. It is this time signal that is used to triangulate positioning and it can also be received by a network time server fitted with a GPS antenna. GPS is available everywhere in the World but an antenna does need to have a clear view of the sky.

Q. If I have large network then I will need multiple network time servers?
A. Not necessarily. NTP is hierarchical and divided into ‘stratum’ an atomic clock is a stratum 0 device, a time server that receives the clocks signal is a stratum 1 device and a network device that receives a signal from a time server is a stratum 2 device. NTP can support 12 stratum (realistically, although more is possible) and each strata can be used as a device to synchronise to. Therefore a stratum 2 device can synchronise other machine lower down the strata and so on. This means no matter how big a network is, only one network time server would be required.