Category: GPS

GPS Time Server Receiving Time from Space

  |   By

GPS time servers are network time servers that receive a timing signal from the GPS network and distribute it amongst all devices on a network ensuring that the entire network is synchronised.

GPS is an ideal time source as a GPS signal is available anywhere on the globe. GPS stands for Global Positioning System, the GPS network is owned by the US military and controlled and run by the US air force (space wing). It is however, since the late 1980’s been opened up to the world’s civilian population as tool to aid navigation.

The GPS network is actually a constellation of 32 satellites that orbit the Earth, they do not actually provide positioning information (GPS receivers do that) but transmit from their onboard atomic clocks a timing signal.

This timing signal is what is used to work out a global position by triangulating 3-4 timing signals a receiver can work out how far and therefore the position you are from a satellite. In essence then, a global positioning satellite is just an orbiting clock and it is this information that is broadcast that can be picked up by a GPS time server and distributed amongst a network.

Whilst strictly speaking GPS time is not the same as the global timescale UTC (coordinated universal time), a GPS time server will automatically convert the time format into UTC.

A GPS time server can provide unbridled accuracy with networks able to maintain accuracy to within a few milliseconds of UTC.

NTP GPS Server Synchronisation Solution

  |   By

Time synchronisation is now a critical aspect of network management enabling time sensitive applications to be conducted from across the globe. Without correct synchronisation computer systems would be unable to communicate with each other and transactions such as seat reservation, Internet auctions and online banking would be impossible.

For effective time synchronisation the global timescale UTC (Coordinated Universal Time) is a prerequisite. While a computer network can be synchronised to any single time source, UTC is employed by computer networks all over the world. By synchronising to a UTC time source a computer network can therefore be synchronised to every other computer network across the globe that also use UTC as their time source.

Receiving a reliable UTC time source is not as easy as it sounds. Many network administrators opt to use a UTC Internet time source. Whilst many of these time sources are accurate enough, they can be too far away to provide reliability and there are plenty of Internet time sources that are vastly inaccurate.

Another reason why Internet time sources should not be used as a source of time synchronisation is because an Internet time source is outside of a firewall and leaving a gap in the firewall to receive timing information can leave a system open to abuse.

So that UTC time can be opted as a civil time throughout the world several national physics laboratories broadcast a UTC timing signal that can be received and utilised as a network time source. Unfortunately, however, these time signals are not available in every country and even in those areas where a signal exists; they can be quite often obstructed by interference and local topography.

Another method for receiving a source of UTC time is to use the GPS satellite network. Strictly speaking the Global Positioning System (GPS ) does not relay UTC but it is a time based on International Atomic Time (TAI) with a predefined offset. A GPS NTP clock can simply convert the GPS time into UTC for synchronisation purposes.

The main advantage of using GPS is that a GPS signal is available anywhere on the planet providing that there is a clear view of the sky above (GPS transmissions are broadcast via line-of-sight) so UTC synchronisation can be conducted anywhere.

UTC Radio References from Around the World

  |   By

UTC (Coordinated Universal Time) is the global civil timescale used by millions of people, businesses and authorities across the globe. UTC is based on the time told by caesium atomic clocks. These clocks are the most reliably accurate chronometers on Earth, able to maintain accurate time for several millions of years whilst neither losing nor gaining a second.

Unfortunately caesium clocks are far too expensive and delicate pieces of machinery to make it practical for us all to have one but fortunately the time that they tell is transmitted by several countries. These nation’s national physics laboratories tend to broadcast the UTC time from these clocks by long-wave.

In the UK the 60 kHz transmission is broadcast by the National Physical Laboratory from a transmitter in Anthorn in Cumbria (it was based in Rugby until 2007). NPL constantly maintain the transmissions and assess its accuracy. Whilst the MSF signal is a British based transmission is possible to receive the signal in some parts of northern Europe and Scandinavia.

However, in mainland Europe, the strongest time and frequency signal is the German transmission broadcast from Frankfurt in Germany. This signal known as the DCF is controlled and maintained by the German National Physics Laboratory. While Switzerland also has its own time and frequency signal, the German DCF signal is by far the most widely used in Europe.

In the USA a similar system is maintained by NIST (National Institute for Standards and Time) and is broadcast from Fort Collins, Colorado. This signal is known as WWVB and is available in most parts of Northern America (including Canada).

Japan maintains its own timing broadcast (JJY) also which is popular in the south pacific and several other countries (such as France) maintain their own signals too although these tend to have only minor coverage.

All these times signals operate in a similar fashion. The strength of the signal is either reduced by between 6 and 10 dB or switched off for a specific amount of time before being restored at the start of each second. The amount of time the signal is reduced indicates a stream of binary numbers with positioning markers.
The signals operate on a 60 kHz frequency and carry a time and date code which relays the following information in binary format: Year, month, day of month,  day of week,  hour,  minute,  DUT1 (the difference between UTC and UT1 which is based on the Earths rotation). The signals also relay information about local time such as British Summer Time.

Global Positioning System (GPS) Operation and Implementation

  |   By

The GPS (Global Positioning System) network has been around for over thirty years but it was only since 1983 when a Korean airliner was accidentally shot down did the US military, who own and control the system, agree to open it up for civilian use in the hope of preventing such tragedies.

The GPS system is currently the world’s only global navigational satellite system (GNSS) although Europe and China are currently developing their own (Galileo and GLONASS). GPS, or to give it its official name Navstar GPS is based on a constellation of between 24 and 32 Medium Earth Orbit satellites.

These satellites transmit messages via precise microwave signals. These messages contain the time the message was sent, a precise orbit for the satellite sending the message and the general system health and rough orbits of all GPS satellites.

To work out a position a GPS receiver is required. This receives the signal from 4 (or more) satellites. Because the satellites broadcast their position and the time the message was sent, the GPS receiver can use the timing signal and distance information to workout by process of triangulation exactly where it is in the world.

GPS and other GNSS systems can only pinpoint the location so accurately because each relays timing information from an onboard atomic clock. Atomic clocks are so accurate that they either lose or gain a second in millions of years. It is only this accuracy that makes GPS positioning possible because as the signal transmitted by the satellites travel at the speed of light (up to 180,000 miles an second) a one second inaccuracy could make place positioning thousands of miles in the wrong place.

Because of this onboard atomic clock and high level of timing accuracy, a GPS satellite can be used as a source for UTC (Coordinated Universal Time). UTC is a global timescale based on the time told by atomic clocks and used across the globe to allow computer networks to all synchronize to the same time.

Computer networks use NTP time servers (network time protocol) to synchronise their systems. An  NTP server connected to a GPS antenna can receive a UTC time signal from the satellite and then distribute amongst the network.

Utilizing the GPs for timing information is one of the most accurate and secure methods of receiving a UTC source with accuracies of a few milliseconds quite feasibly possible.

Receiving a Time Source

  |   By

A NTP Server connects to a computer network with the purpose of synchronising all computers, routers and other devices to the exact same time. NTP servers use Network Time Protocol to adjust the drift of different machines to match the reference time.

NTP servers rely on using a reference clock; most networks that use a NTP server will use a UTC (Coordinated Universal Time) time source. UTC is based on the time told by the incredibly accurate and expensive atomic clocks.

Atomic clocks work on the principle that a single atom (in most cases the caesium -133) will resonate at an exact rate at certain energy levels. The accuracy of atomic clocks is so proficient that UTC was developed to allow international Atomic Time (TAI) and Greenwich Meantime (GMT) to be combined, allowing for the slowing of the Earth’s rotation by adding leap seconds and therefore keeping the Sun at the Earth’s meridian at noon.

Failure to account for this slowing in the Earth’s spin would result in the eventual drift of day and night (albeit in many millennia).
A NTP server can be set to receive a UTC time signal from across the Internet although these can vary tremendously in accuracy and are reliant on reasonably close distances from client and server.

Relying on an Internet based timing references can also leave a network open to malicious users as they can not utilise NTP authentication which is a security measure used to ensure a timing reference is what it says it is.

Many dedicated NTP servers are designed to receive a more accurate and authenticated timing reference. One method utilises radio transmissions that are broadcast by several national physics laboratories such as NIST (National Institute for Standards and Technology) in the US (WWVB signal) and NPL (National Physical Laboratory) in the UK (MSF signal). These signals are broadcast in long wave and can be picked up within the broadcast area although the signals can be blocked by local geographical features.

Another method to receive a UTC timing reference is to use the onboard atomic clocks on GPS (Global Positioning System) network. While GPS is most commonly known as a positioning system the satellite actually relays timing information which is used by GPS receivers to calculate the time it has travelled and therefore the distance.
While the GPS signals are not broadcast in UTC format they are highly accurate and NTP has no problem in converting them.

The NTP server checks the time stamp from the UTC source and uses the information to calculate if the network clocks are drifting and adds or subtracts a second to match the reference clock. The NTP server will do this at set intervals, normally every fifteen minutes to ensure perfect accuracy.

NTP is accurate to within 1/100th of a second (10 milliseconds) over the public Internet and can perform even better over LANs and WANS with accuracies of 1/5000th of a second (200 microseconds) not unheard of.

To ensure further accuracy the NTP service (or daemon on Linux) runs in the background and does not believe the time it is told until after several exchanges and each one has passed a protocol specification (a test), the server is then considered. It usually takes about five good samples) until a NTP server is accepted as a timing source.

Choosing a NTP Server and Selecting the Best Timing Source for You

  |   By

The NTP server is an integral part of the modern computer network. Without Network Time Protocol and NTP time servers many of the modern functionality of computers that we take for granted such as online reservation, Internet trading and satellite communication would be impossible.

Synchronisation in computers is dealt with by NTP.  NTP and NTP servers use a single time reference to synchronise all machines on a network to that time.  This time reference could in fact be anything such as the time on a wrist watch perhaps. However, synchronisation is pointless unless a UTC (coordinated universal time) time source is used as UTC has been developed to allow the whole world to synchronise to the same time, allowing truly global synchronisation.

UTC is based on the time told by atomic clocks although compensation measures such as Leap Seconds are added to UTC to keep it inline with Greenwich Meantime (GMT).

Atomic clocks are very expensive and extremely delicate pieces of equipment and not the sort of thing that can be housed in the office server room. Fortunately a NTP server can receive a UTC time source from several different locations.

The Internet is perhaps the most widely used source of time references. Unfortunately however, there are draw backs in using the Internet for a timing source. Firstly the Internet timing sources can’t be authenticated. Authentication is a security measure used by NTP to check that timing source is genuine. Secondly, to use an Internet timing reference means a hole has to be left open in the network’s firewall, again compromising security. Thirdly, Internet timing sources are notoriously inaccurate and those that aren’t can often be too far away from a client to provide any useful precision.

However, if security and high level of accuracy to UTC time is not required then the Internet can provide a simple and affordable solution.

A far more secure method of receiving a UTC timing reference is to use the specialist national time and frequency transmission broadcast by several countries. The UK (MSF), USA (WWVB), Germany (DCF) and Japan (JJY) all boast a long wave timing signal. While these signals are limited in range and strength, where available they make an ideal timing source as the radio receiver can pick these signals up from inside a building. These transmissions can also be authenticated providing a high level of security.

The third and perhaps simplest solution is to use a GPS NTP server. These use the signals sent from the Global Positioning System which contains timing information. This is ideal as the GPS signal can be received literally anywhere in the world so if there is no radio transmission your area then the GPS network will provide a secure and authenticated solution.

The only downside to GPS is that an antenna has to have a good view of the sky and therefore need to be positioned on the roof. This obviously has logistical drawbacks if the server room is in the basement of a sky-scraper.

In selecting a timing source, the most important thing to remember is where the NTP server is going to be situated. If it is indoors and there is no opportunity to run and antenna to the roof then the radio transmissions would be the best alternative. If there are no radio transmission in your country/area or the signals are blocked by local topography then the GPS is an ideal solution.

However, if accuracy and security are not an issue then the Internet  would be the most obvious solution.

Understanding a NTP GPS Server

  |   By

A NTP GPS Server is a type of time server that uses Network Time Protocol (NTP) as a method for synchronizing the time on network devices and computers after receiving a time signal from he GPS network.

The GPS (Global Positioning System) network is a constellation of satellites owned and operated by the USA military. Most people are aware of GPS as an aid for satellite navigation. In actual fact, the basis of the transmissions broadcast by the GPS satellites is a time signal. This time signal is generated by the satellite’s onboard atomic clock. It is this information that a satellite navigation system receives and calculates by triangulation the distance away from the satellites.

This timing signal is what is used by a NTP GPS server as a reference to synchronize a network too. NTP then distributes this time to all routers and computers on that network.

A NTP GPS server comprises of a GPS receiver, GPS antenna and NTP software. The GPS antenna should be situated on a rooftop which will give the best possibility of receiving the transmissions from the satellites.

The GPS receiver then converts this information into timing information that can be read and distributed by NTP.

While the atomic clocks onboard the GPS satellites do not transmit a UTC timing code (Coordinated Universal Time). However, NTP has the ability to convert the atomic clock from the satellites to UTC. This allows computer networks to be synchronized to the same universal time source no matter where they are in the world.

Using a dedicated NTP GPS server a network can be synchronized to within a few milliseconds of UTC time with accuracies of a few hundred nanoseconds made possible over LAN’s.

NTP GPS Server for Time Critical Applications

  |   By

The GPS (Global Positioning System) is a Global Navigational Satellite System (GNSS) controlled and run by the United States of America.

GNSS systems work by using satellites several thousand miles above the Earth’s surface that beam timing information down to a GNSS receiver (like the satellite navigation unit in our cars). It is this information that is used by the GPS receiver to triangulate an exact position. They can only do this by having onboard their own highly accurate atomic clock as the distance the satellites are away from the Earth, even an inaccuracy of a second or two could mean a sat navigation’s location could be miles out.

As a consequence of having this accurate time sources, GPS and the new breed of GNSS systems can all be used to receive an absolute or UTC (Universal Coordinated Time) time source. This time source can be used by computer networks running a NTP server (Network Time Protocol) to synchronise all machines and devices to the same time.

NTP is a protocol designed to synchronise computers and network devices to an external timing reference.

GPS is an ideal time and frequency reference because it can provide highly accurate time anywhere in the world using relatively cheap components.  Each GPS satellite transmits in two frequencies L2 for the military use and L1 for use by civilians transmitted at 1575 MHz, Low-cost GPS antennas and receivers are now widely available and dedicated NTP GPS servers are now relatively low cost.

The radio signal transmitted by the satellite can pass through windows but can be blocked by buildings so the ideal location for a GPS antenna is on a rooftop with a good view of the sky. The more satellites it can receive from the better the signal. However, roof-mounted antennas can be prone to lighting strikes or other voltage surges so a suppressor is highly recommend being installed inline on the GPS cable.

A NTP GPS Server is ideal in providing NTP time servers or stand-alone computers with a highly accurate external reference for synchronisation. Even with relatively low cost equipment, accuracy of hundred nanoseconds (a nanosecond = a billionth of a second) can be reasonably achieved using GPS as an external reference.

GPS Time Server and NTP (Network Time Protocol)?

  |   By

We are all used to Satellite Navigation by now. More and more people are installing those little black boxes into their cars and throwing away their old paper road maps. The advantages of satellite navigation are many fold – from constant updates keeping the maps current to being able to pin point your location miles from any landmarks or road signs but GPS has more uses than merely triangulating a position for direction finding, it can be utilized to provide time and frequency information worldwide.

Since the early 1990’s the Global Positioning system (GPS) has been the worlds’ only fully functioning Global Navigational Satellite System (GNSS). Run by the American military, GPS (sometimes referred to as NAVSTAR) has allowed accurate timing and location finding all over the world.

To accurately pinpoint a location, all GNSS systems require an absolute time source, that is a time source as accurate as humanely possible such as that from an atomic clock. Without knowing exactly what the time is a GNSS satellite would not be able to accurately pin point a location (as the Earth, satellites and people are all moving about a location can only be defined by a position and time). Because of the distance of the satellites away from the Earth, even an inaccuracy of a second or two could mean a sat nav’s location could be miles out.

For this reason each satellite has a highly accurate atomic clock onboard which can also be used by NTP (Network Time Protocol) servers to synchronise computer networks. GPS is an ideal time and frequency source because it can provide highly accurate time anywhere in the world using relatively cheap components.

A GPS receiver decodes the signal sent from the GPS antenna to a computer readable protocol which can be utilised by most time servers and operating systems including, Windows, LINUX and UNIX.

The GPS receiver also outputs a precise pulse every second that GPS NTP servers and computer time servers may utilise to provide ultra-precise timing. The pulse-per-second timing on most receivers is accurate to within 0.001 of a second of UTC (Coordinated Universal Time or Temps Universel Coordonné).

GPS is ideal in providing NTP time servers or stand-alone computers with a highly accurate external reference for synchronisation. Even with relatively low cost equipment, accuracy of hundred nanoseconds (a nanosecond = a billionth of a second) can be reasonably achieved using GPS as an external reference.

In 2002, the European Space Agency and European Union agreed to build Europe’s own GNSS called Galileo. To compete with the new and more advanced GNSS technologies the GPS programme is currently being upgraded and it is expected that when Galileo begins relaying signals both systems will become interoperable allowing even more accuracy in timing and positioning.

Choosing a dedicated GPS Time Server

  |   By

Because of the advancement in satellite navigation technologies and the increased coverage of the American GPS satellite network, many more administrators are choosing GPS as a source for a timing reference to synchronize their time servers too.

Traditionally many more people opted to receive a timing source from either across the Internet or via specialist national time and frequency transmissions.  However, the Global Positioning System is now by far the most popular method to receive a UTC time source from.

UTC (Coordinated Universal Time) is the global timescale based on the time told by atomic clocks which are the most accurate of time keeping devices.

A GPS time server is a relatively simple piece of hardware. Normally it consists of a dedicated NTP server with software, a GPS receiver and a GPS antenna. The antenna is the only drawback in using a dedicated GPS time server as it has to be positioned on the roof to have a clear view of the sky, although some dedicated GPS time servers can still keep time synchronized if they only receive a signal for a few hours a day, although this is not the most accurate way of time synchronization.

Once connected, the GPS time server will receive the time signal from the GPS satellites and then distribute it to all devices that require synchronization.

Most time servers, whether they receive a GPS signal or not, will use Network Time Protocol (NTP) to distribute the time signal to all devices.

NTP is one of the Internet’s oldest protocols and is by far the most widespread time synchronization protocols used. NTP is under constant development and can accurately synchronise a network to within a few milliseconds of UTC time via a dedicated GPS time server.