Posts by: Richard N Williams

Atomic Clocks Now Doubled in Precision

  |   By

As with the advance of computer technology that seems to exponentially increase in capability every year, atomic clocks too seem to increase dramatically in their accuracy year on year.

Now, those pioneers of atomic clock technology, the US National Institute of Standards Time (NIST), have announced they have managed to produce an atomic clock with accuracy twice that of any clocks that have gone before.

The clock is based in a single aluminium atom and NIST claim it can remain accurate without losing a second in over 3.7 billion years (about the same length of time that life has existed Earth).

The previous most accurate clock was devised by the German Physikalisch-Technische Bundesanstalt (PTB) and was an optical clock based on a strontium atom and was accurate to a second in over a billion years. This new atomic clock by NIST is also an optical clock but is based on aluminium atoms, which according to NIST’s research with this clock, is far more accurate.

Optical clocks use lasers to hold atoms still and differ to the traditional atomic clocks used by computer networks using NTP servers (Network Time Protocol) and other technologies which are based on fountain clocks. Not only do these traditional fountain clocks use Caesium as their time keeping atom but instead of lasers they use super-cooled liquids and vacuums to control the atoms.

Thanks to work by NIST, PTB and the UK’s NPL (National Physical Laboratory) atomic clocks continue to advance exponentially, however, these new optical atomic clocks based on atoms like aluminium, mercury and strontium are a long way from being used as a basis for UTC (Coordinated Universal Time).

UTC is governed by a constellation of caesium fountain clocks that while still accurate to a second in 100,000 years are by far less precise than these optical clocks and are based on technology over fifty years old. And unfortunately until the world’s science community can agree on an atom and clock design to be used internationally, these precise atomic clocks will remain a play thing of the scientific community only.

The Effect of Solar Flares on GPS

  |   By

Forthcoming space weather may affect GPS devices including satellite navigation and NTP GPS time servers.

Whilst many of us have had to cope with some extreme weather last winter, further storms are on their way – this time from space.

Solar flares are a regular occurrence on the surface of the sun. Whilst scientists are not completely sure what causes them we know two things about solar flares: – they are cyclical – and are related to sunspot activity.

For that last eleven years the sun’s sunspot activity – small dark depressions that appear on the surface of the sun – has been very minimal. But this eleven year cycle has come to an end and there has been a rise in sun spots at the end of last year meaning 2010 will be a bumper year for both sunspots and solar flares.

But there is no need to worry about becoming toasted by solar flares as these bursts of hot gases that flare from the sun never get far enough to reach the Earth, however, they can effect us in different ways.

Solar flares are bursts of energy and as such emit radiation and high energy particles. On earth, we are protected by these blasts of energy and radiation by the earth’s magnetic field and ionosphere, however, satellite communications are not and this can lead to trouble.

Whilst the effect of solar flare radiation is very weak, it can slow down and reflect radio waves as they travel through the ionosphere towards Earth. This interference can cause GPS satellites in particular extreme problems as they are reliant on accuracy to provide navigational information.

While the effects of solar flares are mild, it is possible GPS devices will encounter brief periods of no signal and also the problem of inaccurate signals meaning positing information may become unreliable.

This will not just affect navigation either as the GPS system is used by hundreds and thousands of computer networks as a source of reliable time.

Whilst most dedicated GPS time servers should be able to cope with periods of instability without losing precision, for worried network administrators not wanting to go into work to find their systems have crashed because of a lack of synchronisation may want to consider using a radio referenced Network time server that uses broadcast transmission such as MSF or WVBB.

Dual NTP time servers (Network Time Protocol) are also available that can receive both radio and GPS, ensuring a source of time is always constantly available.

A Guide to Synchronising a Network with NTP

  |   By

Network Time Protocol (NTP) is a TCP/IP protocol developed when the internet was in its infancy. It was developed by David Mills of the University of Delaware who was trying to synchronise computers across a network with a degree of precision.

NTP is a UNIX based protocol but it has been ported to operate just as effectively on PCs and a version has been included with operating systems since Windows 2000 (including Windows 7, Vista and XP).

NTP, and the daemon (application) that controls it, is not just a method of passing the time around. Any system running the NTP daemon can act as a client by querying the reference time from other servers or it can make its own time available for other devices to use which in effect turns it into a time server itself. It can also act as a peer by collaborating with other peers to find the most stable and accurate time source to use.

One of the most flexible aspects of NTP is its hierarchical nature. NTP divides devices into strata, each stratum level is defined by its proximity to the reference clock (atomic clock). The atomic clock itself is a stratum 0 device, the closest device to it (often a dedicated NTP time server) is a stratum 1 device whilst other devices that connect to that become stratum 2. NTP can maintain accuracy to within 16 stratum levels.

Any network that needs to be synchronised, has to first identify and locate a time source for NTP to distribute. Internet sources of time are available but thee are often taken from stratum 2 devices that operate through the firewall. The only way NTP can peer the time is if the TCP/IP port is left open to allow the traffic through. This could lead to security issues as malicious users can take advantage of this firewall hole.

Dedicated NTP time servers find a source of time via GPS or radio signals and so don’t leave a network vulnerable to attack. By attaching a NTP time server to a router and entire network of hundreds and even thousands of devices can be synchronised thanks to NTP’s hierarchical structure.

New Technologies and the Growing Importance of Time Synchronisation

  |   By

The NTP protocol (Network Time Protocol) has since the earliest days of the internet been responsible for synchronising the time across computer networks. Not only is NTP effective at this, but when connected to a source of UTC (Coordinated Universal Time) NTP is also extremely accurate.

Most computer networks connect to UTC via a dedicated NTP time server. These devices use an external connection to an atomic clock to receive the time and then distribute it across a network. By connecting externally, via GPS (Global Positioning System) or long wave radio , not only are NTP time servers incredibly accurate but they are also very secure as they don’t rely on an internet connection for the time.
NTP time servers are also increasingly being used for other new innovations. Not only have traditional technologies such as CCTV, traffic lights, air traffic control and the stock exchange, become reliant on time synchronisation with time servers but an increasing amount of modern technologies are too.

NTP time servers are now common in modern digital signage systems (the use of flat screen TVs for out of home advertising). These networked screens are often synchronised to allow scheduled and orchestrated campaigns.

A synchronized digital signage campaign is one method of making an out of home advertising campaign stand-out. This is increasingly important as more and more digital signage is being implemented making a conventional digital signage campaign difficult to engage and catch the eye.

By synchronising multiple screens together with a NTP time server and running a scheduled and timed campaign. This allows content to be scheduled or timed to maximise its impact.

Small time servers can eben be installed directly into the digital signage of LCD enclosure although as most of these tiem synchnisation devices require a GPS or long wave signal the antenna can be problamtic. A better solution is to network the digtal signage and use a single NTP server as a method fo synchonisation.

NTP may be the oldest protocol on the internet and NTP time servers have been around for nearly two decades but this comparatively antique technology and software has never been so much in demand.

Choosing a Time Server for your Network

  |   By

Any network administrator will tell you how important time synchronization is for a modern computer network. Computers rely on the time for nearly everything, especially in today’s age of online trading and global communication where accuracy is essential.

Failing to ensure that computers are accurately synced together could lead to all manner of problems: data loss, security vulnerabilities, unable to conduct time sensitive transactions and difficulties debugging can all be caused by a lack of, or not adequate enough, time synchronization.

But ensuring every computer on a network has the exact same time is simple thanks to two technologies: the atomic clock and the NTP server (Network Time Protocol).

Atomic clocks are extremely accurate chronometers. They can keep time and not drift by as much of a second in thousands of years and it is this accuracy that has made possible technologies and applications such as satellite navigation, online trading and GPS.

Time synchronization for computer networks is controlled by the network time server, commonly referred to as the NTP server after the time synchronization protocol they use, Network Time Protocol.
When it comes to choosing a time server, there are really only two real type – the radio reference NTP time server and the GPS NTP time server.

Radio reference time servers receive the time from long wave transmission broadcast by physics laboratories like NIST in North America or NPL in the UK. These transmissions can often be picked up throughout the country of origin (and beyond) although local topography and interference from other electrical devices can interfere with the signal.

GPS time servers, on the other hand, use the satellite navigation signal transmitted from GPS satellites. The GPS transmissions are generated by atomic clocks onboard the satellites so they are a highly accurate source of time just like the atomic clock generated time broadcast by the physics laboratories.

Apart from the disadvantage of having to have a roof top antenna (GPS works by line of sight so a clear view of the sky is essential), GPS is obtainable literally everywhere on the planet.

As both types of time server can provide an accurate source of reliable time the decision of which type of time server should be based on the availability of long wave signals or whether it is possible to install a rooftop GPS antenna.

Using GPS as a source of Accurate Time

  |   By

The Global Positioning System (GPS) is an increasingly popular tool, used throughout the world as a source of wayfinding and navigation. However, there is much more to the GPS network than just satellite navigation as the transmissions broadcast by the GPS satellites can also be used as a highly accurate source of time.

GPS satellites are actually just orbiting clocks as each one contains atomic clocks that generate a time signal. It is the time signal that is broadcast by the GPS satellites that satellite navigation receivers in cars and planes use to work out distance and position.

Positioning is only possible because thee time signals are so accurate. Vehicle sat navs for instance use the signals from four orbiting satellites and triangulate the information to work out the position. However, if there is just one second inaccuracy with one of the time signals then the positing information could be thousands of miles out – proving useless.

It is testament to the accuracy of atomic clocks used to generate GPS signals that currently a GPS receiver can work out its position on earth to within five metres.

Because GPS satellites are so accurate, they make an ideal source of time to synchronise a computer network to. Strictly speaking GPS time differs from the international timescale UTC (coordinated Universal Time) as UTC has had additional leap seconds added to it to ensure parity with the earth’s rotation meaning it is exactly 18 seconds ahead of GPS but is easily converted by NTP the time synchronisation protocol (Network Time Protocol).

GPS time servers receive the GPS time signal via a GPS antenna which has to be placed on the roof to receive the line of sight transmissions. Once the GPS signal is received the NTP GPS time server will distribute the signal to all devices on the NTP network and corrects any drift on individual machines.

GPS time servers are dedicated easy to use devices and can ensure millisecond accuracy to UTC without any of the security risks involved in using an internet time source.

Using the WWVB Signal for Time Synchronization

  |   By

We all rely on the time to keep our days scheduled. Wristwatches, wall clocks and even the DVD player all tell us the time but on occasion, this is not accurate enough, especially when time needs to be synchronized.

There are many technologies that require extremely accurate precision between systems, from satellite navigation to many internet applications, accurate time is becoming increasingly important.

However, achieving precision is not always straight forward, especially in modern computer networks. While all computer systems have inbuilt clocks, these are not accurate time pieces but standard crystal oscillators, the same technology used in other electronic clocks.

The problem with relying on system clocks like this is that they are prone to drift and on a network consisting of hundreds or thousands of machines, if the clocks are drifting at a different rate – chaos can soon ensue. Emails are received before they are sent and time critical applications fail.

Atomic clocks are the most accurate time pieces around but these are large scale laboratory tools and are impractical (and highly expensive) to be used by computer networks.

However, physics laboratories like the North American NIST (National Institute of Standards and Time) do have atomic clocks which they broadcast time signals from. These time signals can be used by computer networks for the purpose of synchronization.

In North America, the NIST broadcasted time code is called WWVB and is transmitted out of Boulder, Colorado on long wave at 60Hz. The time code contains the year, day, hour, minute, second, and as it is a source of UTC, any leap seconds that are added to ensure parity with the rotation of the Earth.

Receiving the WWVB signal and using it to synchronize a computer network is simple to do. Radio reference network time servers can receive this broadcast throughout North America and by using the protocol NTP (Network Time Protocol).

A dedicated NTP time server that can receive the WWVB signal can synchronize hundreds and even thousands of different devices to the WWVB signal ensuring each one is to within a few milliseconds of UTC.

Common Issues in Time Synchronisation

  |   By

Time synchronization is essential in modern computer networking especially with the amount of time sensitive transactions conducted over the internet these days. Without adequate synchronization computer systems will:

  • Be vulnerable to malicious attacks
  • Susceptible to data loss
  • Unable to conduct time sensitive transactions
  • Difficult to debug

Fortunately ensuring a computer network is accurately synchronized is relatively straight forward. There different methods of synchronizing a network to the global timescale UTC (Coordinated Universal Time) but occasionally some common issues do arise.

My dedicated time server is unable to receive a signal

Dedicated NTP time servers receive the time from either long wave transmissions or GPS networks. If using a GPS NTP server then a GPS antenna needs to be situated on a roof to obtain a clear view of the sky. However, a NTP radio receiver does not need a roof mounted aerial although the signal can be vulnerable to interference and the correct angle toward the transmitter should be attained.

I am using a public time server across the Internet but my devices are not synchronised.

As public time servers can be used by anyone they can receive high levels of traffic. This can cause problems with bandwidth and mean that your time requests can’t get through. Public NTP servers can also fall victim to DDoS attacks and some high profile incidents of NTP vandalism have occurred.

Internet time servers are also stratum 2 devices, in other words they themselves have to connect to a time server to receive the correct time and because of this some online time references are wildly inaccurate.

*NB – internet time servers are also incapable of being authenticated to allow NTP to establish if the time source is coming from where it claims to be, combined with the problem of ensuring the firewall is open to receive the time requests, can mean that internet time servers present a clear risk to security.

The time on my computer seems to be off by a second to standard UTC time

You need to check if a recent leap second has been added to UTC. Leap seconds are added once or twice a year to ensure UTC and the Earth’s rotation match. Some time servers experience difficulties in making the leap second adjustment.

Atomic Clock Synchronization made easy with a NTP Time Server

  |   By

Atomic clocks are the ultimate in timekeeping devices. Their accuracy is incredible as an atomic clock will not drift by as much as a second within a million years, and when this is compared to the next best chronometers, such as electronic clock that can drift by a second in a week, an atomic clock is incredibly more precise.

Atomic clocks are used the world over and are the heart of many modern technologies making capable a multitude of applications that we take for granted. Internet trading, satellite navigation, air traffic control and international banking are all industries that rely heavily on

They also govern the world’s timescale, UTC (Coordinated Universal Time) which is kept true by a constellation of these clocks (although UTC has to be adjusted to accommodate the slowing of the Earth’s spin by adding leap seconds).

Computer networks are often required to run synchronized to UTC. This synchronisation is vital in networks that conduct time sensitive transactions or require high levels of security.

A computer network without adequate time synchronization can cause many issues including:

Loss of data

  • Difficulties in identifying and logging errors
  • Increased risk of security breaches.
  • Unable to conduct time sensitive transactions

For these reasons many computer networks have to be synchronized to a source of UTC and kept as accurate as possible. And although atomic clocks are large bulky devices kept in the confines of physics laboratories, using them as a source of time is incredibly simple.

Network Time Protocol (NTP) is a software protocol designed solely for the synchronisation of networks and computer systems and by using a dedicated NTP server the time from an atomic clock can be received by the time server and distributed around the network using NTP.

NTP servers use radio frequencies and more commonly the GPS satellite signals to receive the atomic clock timing signals which is then spread throughout the network with NTP regularly adjusting each device to ensure it is as accurate as possible.

MSF Outages for 2010

  |   By

Users of the National Physical Laboratory’s (NPL) MSF time and frequency signal are probably aware that the signal is occasionally taken off-air for scheduled maintenance.

NPL have published there scheduled maintenance for 2010 where the signal will be temporarily taken off-air. Usually the scheduled downtimes lasts for less than four hours but users need to be aware that while NPL and VT Communications, who service the antenna, make every effort to ensure the transmitter is off for a brief amount of time as possible, there can be delays.

And while NPL like to ensure all users of the MSF signal have advanced warning of possible outages, emergency repairs and other issues may lead to unscheduled outages. Any user receiving problems receiving the MSF signal should check the NPL website in case of unscheduled maintenance before contacting your time server vendor.

The dates and times of the scheduled maintenance periods for 2010 are as follows:

* 11 March 2010 from 10:00 UTC to 14:00 UTC

* 10 June 2010 from 10:00 BST to 14:00 BST (UTC + 1 hr)

* 9 September 2010 from 10:00 BST to 14:00 BST (UTC + 1 hr)

* 9 December 2010 from 10:00 UTC to 14:00 UTC

As these scheduled outages should take no longer than four hours, users of MSF referenced time servers should not notice any drop off in accuracy of their network as their shouldn’t be enough time for any device to drift.

However, for those users concerned about accuracy or require a NTP time server (Network Time Server) that doesn’t succumb to regular outages, they may wish to consider investing in a GPS time server.

GPS time servers receive the time from the orbiting navigational satellites. As these are available anywhere on the globe and the signals are never down for outages they can provide a constant accurate time signal (GPS time is not the same as UTC but is easily converted by NTP as it is exactly 17 seconds behind due to leap seconds being added to UTC and not GPS).