Common Issues in Time Synchronisation

By on

Time synchronization is essential in modern computer networking especially with the amount of time sensitive transactions conducted over the internet these days. Without adequate synchronization computer systems will:

  • Be vulnerable to malicious attacks
  • Susceptible to data loss
  • Unable to conduct time sensitive transactions
  • Difficult to debug

Fortunately ensuring a computer network is accurately synchronized is relatively straight forward. There different methods of synchronizing a network to the global timescale UTC (Coordinated Universal Time) but occasionally some common issues do arise.

My dedicated time server is unable to receive a signal

Dedicated NTP time servers receive the time from either long wave transmissions or GPS networks. If using a GPS NTP server then a GPS antenna needs to be situated on a roof to obtain a clear view of the sky. However, a NTP radio receiver does not need a roof mounted aerial although the signal can be vulnerable to interference and the correct angle toward the transmitter should be attained.

I am using a public time server across the Internet but my devices are not synchronised.

As public time servers can be used by anyone they can receive high levels of traffic. This can cause problems with bandwidth and mean that your time requests can’t get through. Public NTP servers can also fall victim to DDoS attacks and some high profile incidents of NTP vandalism have occurred.

Internet time servers are also stratum 2 devices, in other words they themselves have to connect to a time server to receive the correct time and because of this some online time references are wildly inaccurate.

*NB – internet time servers are also incapable of being authenticated to allow NTP to establish if the time source is coming from where it claims to be, combined with the problem of ensuring the firewall is open to receive the time requests, can mean that internet time servers present a clear risk to security.

The time on my computer seems to be off by a second to standard UTC time

You need to check if a recent leap second has been added to UTC. Leap seconds are added once or twice a year to ensure UTC and the Earth’s rotation match. Some time servers experience difficulties in making the leap second adjustment.


This post was written by:

Richard N Williams is a technical author and a specialist in the NTP Server and Time Synchronisation industry. Richard N Williams on Google+