Posts by: Richard N Williams

Why a GPS Time Server is the Number One Choice for Time Synchronization

  |   By

When it comes to synchronizing a computer network there are several choice to ensure each device is running the same time. NTP (Network Time Protocol) is the preferred choice of time synchronization protocols but there are a multitude of methods in how NTP receives the time.

The NTP Daemon is installed on most operating systems such as windows and applications such as Windows Time are quite capable of receiving a source of UTC time (Coordinated Universal Time) from across the internet.

UTC time is the preferred time source used by computer networks as it is kept true by atomic clocks. UTC, as the name suggests, is also universal and is used by computer networks all over the world as a source to synchronize too.

However, internet sources of UTC are to recommended for any organisation where security and accuracy are a concern. Not only can the distant from host (internet time server) to the client (your computer network) can never be accurately measured leading to a drop in precision. Furthermore, any source of internet time will need access through the firewall (usually through the UDP 123 port). And by leaving this port open, malicious users and hackers can take advantage and gain access to the system.

Dedicated NTP time servers are a better solution as they receive the time from an external source. There are really two types of NTP server, the radio reference time server and the GPS time server.
Radio reference time servers use signals broadcast by places like NPL (National Physical Laboratory in the UK) or NIST (National Institute of Standards and Time). While these signals are extremely accurate, precise and secure they are affected by regular maintenance on the transmitters that broadcast the signal. Also being long wave they are vulnerable to local interference.

GPS time servers on the other hand receive the time directly from GPS satellites. This GPS time is easily converted to UTC by NTP (GPS time is UTC – 17 seconds exactly as no leap seconds have been added.) As the GPS signal is available everywhere on the earth 24 hours a day, 365 days a week, there is never a risk of a loss of signal.
A single dedicated GPS time server can synchronize a computer network of hundreds, and even thousands of machines to within a few of milliseconds of UTC time.

How to Synchronise a Computer Network using the Time Protocol (NTP)

  |   By

Synchronisation of modern computer networks is vitally important for a multitude of reasons, and thanks to the time protocol NTP (Network Time Protocol) this is relatively straightforward.

NTP is an algorithmic protocol that analyses the time on different computers and compares it to a single time reference and adjusts each clock for drift to ensure synchronisation with the time source. NTP is so capable at this task that a network synchronised using the protocol can realistically obtain millisecond accuracy.

Choosing the time source

When it comes to establishing a time reference there really is no alternative than to find a source of UTC (Coordinated Universal Time). UTC is the global timescale, used throughout the world as a single timescale by computer networks. UTC is kept accurate by a constellation of atomic clocks throughout the world.

Synchronising to UTC

The most basic method of receiving a UTC Time source is to use a stratum 2 internet time server. These are deemed stratum 2 as they distribute the time after first receiving it from a NTP server (stratum 1) that is connected to an atomic clock (stratum 0). Unfortunately this is not the most accurate method of receiving UTC because of the distance the data has to travel from host to the client .

There are also security issues involved in using an internet stratum 2 time source in that the firewall UDP port 123 has to be left open to receive the time code but this firewall opening can, and has been, exploited by malicious users.

Dedicated NTP Servers

Dedicated NTP time servers, often referred to as network time servers, are the most accurate and secure method of synchronising a computer network. They operate externally to the network so there are no firewall issues. These stratum 1 devices receive the UTC time direct from an atomic clock source by either long wave radio transmissions or the GPS network (Global Positioning System). Whilst this does require an antenna, which in the case of GPS has to be placed on a rooftop, the time server itself will automatically synchronise hundreds and indeed thousands of different devices on the network.

Five Reasons why your Network needs a NTP Server

  |   By

Accurate timekeeping if quite often overlooked as a priority for network administrators yet many are risking both security and data loss by not ensuring their networks are synchronised as precisely as possible.

Computers do have their own hardware clocks but these are often just simple electronic oscillators such as exist in digital watches and unfortunately these system clocks are prone to drift, often by as much as several seconds in a week.

Running different machines on a network that have different times – even by only a few seconds – can cause havoc as so many computer tasks rely on time. Time, in the form of timestamps, is the only reference computers use to distinguish between different events and failure to accurately synchronize a network can lead to all sorts of untold problems.

Here are some of the major reasons why your network should be synchronised using Network Time Protocol, prefasbly with a NTP time server.

Data Backups – vital to safeguard data in any business or organization, a lack of synchronisation can lead to not only back ups failing but older versions of files replacing more modern versions.

Malicious Attacks – no matter how secure a network, somebody, somewhere will eventually gain access to your network but without accurate synchronisation it may become impossible to discover what compromises have taken place and it will also give any unauthorised users extra time inside a network to wreak havoc.

Error logging – when faults occur, and they inevitably do, the system logs contain all the information to identify and correct problems. However, if the system logs are not synchronised it can sometimes be impossible to figure out what went wrong and when.

Online Trading – Buying and selling on the internet is now commonplace and in some businesses thousands of online transactions are conducted every second from seat reservation to buying of shares and a lack of accurate synchronisation can result in all sorts of errors in online trading such as items being bought or sold more than once.

Compliance and legality – Many industrial regulations systems require an auditable and accurate method of timing. A unsynchronised network will also be vulnerable to legal issues as the exact time an event is alleged to have taken place can not be proved.

Did you Remember the Leap Second this Year?

  |   By

When you counted down on New Year’s Eve to mark the beginning of the next year did you start at 10 or 11? Most revelers would have counted down from ten but they would have been premature this year as there was an extra second added to last year – the leap second.

Leap seconds are normally inserted once or twice a year (normally on New Year’s Eve and in June) to ensure the global timescale UTC (Coordinated Universal Time) coincides with the astronomical day.

Leap seconds have been used since UTC was first implemented and they are a direct result of our accuracy in timekeeping. The problem is that modern atomic clocks are far more accurate timekeeping devices than the earth itself. It was noticed when atomic clocks were first developed that the length of a day, once thought to be exactly 24 hours, varied.

The variations are caused by the Earth’s rotation which is affected by the moons gravity and tidal forces of the Earth, all of which minutely slow down the earth’s rotation.

This rotational slowing, while only minuscule, if it is not checked then the UTC day would soon drift into the astronomical night (albeit in several thousands of years).

The decision on whether a Leap Second is needed is the remit of the International Earth Rotation Service (IERS), however, Leap Seconds are not popular with everybody and they can cause potential problems when they are introduced.

UTC is used by NTP time servers (Network Time Protocol) as a time reference to synchronise computer networks and other technology and the disruption Leap seconds can cause is seen as not worth the hassle.

However, others, such as astronomers, say that failing to keep UTC in line with the astronomical day would make studying of the heavens nearly impossible.

The last leap second inserted before this one was in 2005 but there have been a total of 23 seconds added to UTC since 1972.

Using NTP to Synchronise a Digital Signage System

  |   By

Digital signage is advancing quite rapidly for such a burgeoning new industry. Fantastic new innovations and content styles are being developed all the time and there are some really fantastic campaigns out there and more and more adventurous implementations are springing up all the time.

One of a growing number of trends is the use of complicated, scheduled and synchronised campaigns on multiple machines. These are incredibly eye-catching especially when the content is synchronised to provide passers-by with an almost interactive experience.

Synchronised content can be really challenging to implement and this sort of content is certainly not for the beginner as setting up such a sophisticated campaign can be really difficult.

One of the essential aspects of these types of scheduled digital signage campaigns is to ensure all displays are synchronized together. Synchronization is perhaps the most crucial aspect of these types of sophisticated digital signage campaigns. There are multiple methods of synchronising this type of campaign.

One solution is to a network time server which receives a single time source and distributes it amongst all devices on that network using the time protocol NTP (Network Time Protocol).

NTP servers receive the time from an external source (normally GPS or long wave radio) so there is no need to have the network connected to the internet although it is just as possible to synchronise to an internet time source although this can be problematic if there is any disturbance in the internet connection.

Any large network of digital signage displays also need to be protected, especially if media players or PCs are being used to generate content. The best option for ensuring total security is to place both the screen and media device in a display enclosure, often referred to as an LCD enclosure.

Dealing with Time across the Globe

  |   By

No matter where we are in the world we all need to know the time at some point in the day but while each day lasts for the same amount of time no matter where you are on Earth the same timescale is not used globally.

The impracticality of Australians having to wake up at 17.00 or those in the US having to start work at 14.00 would rule out suing a single timescale, although the idea was discussed when the Greenwich was named the official prime meridian (where the dateline officially is) for the world some 125 years ago.

While the idea of a global timescale was rejected for the above reasons, it was later decided that 24 longitudinal lines would split the world up into different timezones. These would emanate from GMT around with those on the opposite side of the planet being +12 hours.

However, by the 1970’s a growth in global communications meant that a universal timescale was finally adopted and is still in much use today despite many people having never heard of it.

UTC, Coordinated Universal Time, is based on GMT (Greenwich Meantime) but is kept by a constellation of atomic clocks. It also accounts for variations in earth’s rotation with additional seconds known as ‘leap seconds’ added once of twice a year to counteract the slowing of the Earth’s spin caused by gravitational and tidal forces.

While most people have never heard of UTC or use it directly its influence on our lives in undeniable with computer networks all synchronised to UTC via NTP time servers (Network Time Protocol).

Without this synchronisation to a single timescale many of the technologies and applications we take for granted today would be impossible. Everything from global trading on stocks and shares to internet shopping, email and social networking are only made possible thanks to UTC and the NTP time server.

European Time Synchronisation with DCF-77

  |   By

The DCF 77 signal is a long wave transmission broadcast at 77 KHz from Frankfurt in Germany. DCF -77 is transmitted by Physikalisch-Technische Bundesanstalt, the German national physics laboratory.

DCF-77 is an accurate source of UTC time and is generated by atomic clocks that ensure its precision. DCF-77 is a useful source of time that can be adopted all over Europe by technologies needing an accurate time reference.

Radio controlled clocks and network time servers receive the time signal and in the case of time servers distribute this time signal across a computer network. Most computer network use NTP to distribute the DCF 77 time signal.

There are advantages of using a signal like DCF for time synchronisation. DCF is long wave and is therefore susceptible to interference from other electrical devices but they can penetrate buildings that give the DCF signal an advantage over that other source of UTC time generally available – GPS (Global Positioning System) – which requires a open view of the sky to receive satellite transmissions.

Other long wave radio signals are available in other countries that are similar to DCF-77. In the UK the MSF -60 signal is broadcast by NPL (National Physical Laboratory) from Cumbria while in the USA, NIST (National Institute of Standards and Time) transmit the WVBB signal from Boulder, Colorado.

NTP time servers are an efficient method of receiving these long wave transmissions and then using the time code as a synchronisation source. NTP servers can receive DCF, MSF and WVBB as well as many of them also being able to receive the GPS signal too.

Atomic Clock to be attached to International Space Station

  |   By

One of the world’s most accurate atomic clocks is to be launched into orbit and attached to the International Space Station (ISS) thanks to an agreement signed by the French space agency.

The PHARAO (Projet d’Horloge Atomique par Refroidissement d’Atomes en Orbite) atomic clock is to attached to the ISS in an effort to more accurately test Einstein’s theory of relatively as well as increasing the accuracy of Coordinated Universal Time (UTC) amongst other geodesy experiments.

PHARAO is a next generation caesium atomic clock with an accuracy that corresponds to less than a second’s drift every 300,000 years. PHARAO is to be launched by the European Space Agency (ESA) in 2013.

Atomic clocks are the most accurate timekeeping devices available to mankind yet they are susceptible to changes in gravitational pull, as predicted by Einstein’s theory, as time itself is slewed by the Earth’s pull. By placing this accurate atomic clock into orbit the effect of Earth’s gravity is lessened allowing PHARAO to be more accurate than Earth based clock.

While atomic clocks are not new to orbit, as many satellites; including the GPS network (Global Positioning System) contain atomic clocks, however, PHARAO will be among the most accurate clocks ever launched into space, allowing it to be used for far more detailed analysis.

Atomic clocks have been around since the 1960’s but their increasing development has paved the way for more and more advanced technologies. Atomic clocks form the basis of many modern technologies from satellite navigation to allowing computer networks to communicate effectively across the globe.

Computer networks receive time signals from atomic clocks via NTP time servers (Network Time Protocol) which can accurately synchronise a computer network to within a few milliseconds of UTC.

Time Servers and the Internet

  |   By

Timing is becoming increasingly crucial for computer systems. It is now almost unheard of for a computer network to function without synchronisation to UTC (Coordinated Universal Time). And even single machines used in the home are now equipped with automatic synchronisation. The latest incarnation of Windows for instance, Windows 7, connects to a timing source automatically (although this application can be turned off manually by accessing the time and date preferences.)

The inclusion of these automatic synchronisation tools on the latest operating systems is an indication of how important timing information has become and when you consider the types of applications and transactions that are now conducted on the internet it is of no surprise.

Internet banking, online reservations, internet auctions and even email can be reliant on accurate time. Computers use timestamps as the only point of reference they have to identify when and if a transaction has occurred. Mistakes in timing information can cause untold errors and problems, particularly with debugging.

The internet is full of time servers with over a thousand time sources available for online synchronisation however; the accuracy and usefulness of these online sources of UTC time do vary and leaving a TCP/IP open in the firewall to allow the timing information through can leave a system vulnerable.

For network systems where timing is not only crucial but where security is also a paramount issue then the internet is not a preferred source for receiving UTC information and an external source is required.

Connecting a NTP network to an external source of UTC time is relatively straightforward if a network time server is used. These devices that are often referred to as NTP servers, use the atomic clocks onboard GPS (Global Positioning System) satellites or long wave transmissions broadcast by places such as NIST or NPL.

NTP Servers and the Different Time Sources

  |   By

NTP servers are essential devices for computer network time synchronisation. Ensuring a network coincides with UTC (Coordinated Universal Time) is vital in modern communications such as the Internet and is the primary function of the network time server (NTP server).

As their name suggests, these time servers use the protocol NTP (Network Time Protocol) to handle the synchronisation requests. NTP is already installed in many operating systems and synchronisation is possible without an NTP server by utilising an Internet time source, this can be unsecure and inaccurate for many network needs.

Network time servers receive a far more accurate and secure time signal. There are two methods of receiving the time using a time server: utilising the GPS network or receiving long wave radio transmissions.

Both these methods of receiving a time source are secure as they are external to any network firewall. They are also accurate as both sources of time are generated directly by atomic clocks rather than an Internet time service that are normally NTP devices connected to a third party atomic clock.

The GPS network provides an ideal source of time for NTP servers as the signals are available anywhere. The only downside of using the GPS network is that a view of the sky is required to lock-on to a satellite.

Radio referenced time sources are more flexible in that the long wave signal can be received indoors. They are limited in strength and not every country has a time signal although some signals such as the German DCF and the USA WVBB are available in neighbouring states.