Japan Loses Atomic Clock Signal after Quakes

  |   By

Having suffered earthquakes, a catastrophic tsunami, and a nuclear accident, Japan has had a terrible start to the year. Now, weeks after these terrible incidents, Japan is recovering, rebuilding their damaged infrastructure and trying to contain the emergencies at their stricken nuclear power plants.

But to add insult t injury, many of the Japanese technologies that rely on an accurate atomic clock signals are starting to drift, leading to problems with synchronisation. Like in the UK, Japan’s National Institute of Information, Communications and Technology broadcast an atomic clock time standard by radio signal.

Japan has two signals, but many Japanese NTP servers rely on the signal broadcast from mount Otakadoya, which is located 16 kilometres from the stricken Daiichi power station in Fukushima, and falls within the 20 km exclusion zone imposed when the plant started leaking.

The consequence is that technicians have been unable to attend to the time signal. According to the National Institute of Information, Communications, and Technology, which usually transmits the 40-kilohertz signal, broadcasts ceased a day after the massive Tohoku earthquake struck the region on 11 March. Officials at the institute said they have no idea when service might resume.

Radio signals that broadcast time standards can be susceptible to problems of this nature. These signals often experience outages for repair and maintenance, and the signals can be prone to interference.

As more and more technologies, rely on atomic clock timing, including most computer networks, this susceptibility can cause a lot of apprehension amongst technology managers and network administrators.

Fortunately, a less vulnerable system of receiving time standards is available that is just as accurate and is based on atomic clock time—GPS.

The Global Positioning System, commonly used for satellite navigation, contains atomic clock time information used to calculate positioning. These time signals are available everywhere on the planet with a view of the sky, and as it is space-based, the GPS signal is not susceptible to outages and incidents such as in Fukushima.

 

Our Time and Travel Reliance on GPS

  |   By

Since the Global Positioning System (GPS) first became available for civilian use in the early 1990’s, it has become one of the most commonly used modern pieces of technology. Millions of motorists use satellite navigation, while shipping and airline industries are heavily dependent on it.

And its not just wayfinding that we use GPS for, many technologies from computer network to traffic lights, to CCTV cameras, use the GPS satellite transmissions as a method of controlling time—using the onboard atomic clocks to synchronise these technologies together.

While plenty of advantages to using GPS for both navigation and time synchronisation exist, it’s accurate in both time and positioning and is available, literally everywhere on the planet with a clear view to the sky. However, a recent report by the Royal Academy of Engineering this month has warned that the UK is becoming dangerously dependent on the USA run GPS system.

The report suggests that with so much of our technology now reliant on GPS such as road, rail and shipping equipment, there is a possibility that any loss in GPS signal could lead to loss of life.

And GPS is vulnerable to failure. Not only can GPS satellites be knocked out by solar flares and other cosmological phenomenon, but GPS signals can be blocked by accidental interference or even deliberate jamming.

If the GPS system does fail then navigation systems could become inaccurate leading to accidents, however, for technologies that use GPS as a timing signal, and these range from important systems at air traffic control, to the average business computer network, then fortunately, things should not be that disastrous.

This is because GPS time servers that receive the satellite’s signal use NTP (Network Time Protocol). NTP is the protocol that distributes the GPS time signal around a network, adjusting the system clocks on all the devices on the network to ensure they are synchronised. However, if the signal is lost, then NTP can still remain accurate, calculating the best average of the system clocks. Consequently if the GPS signal does go down, computers can still remain accurate to within a second for several days.

For critical systems, however, where extremely precise time is required constantly, dual NTP time servers are commonly used. Dual time servers not only receive a signal from GPS, but also can pick-up the time standard radio transmissions broadcast by organisations such as NPL or NIST.

A Galleon Systems NTP GPS Time Server

How Atomic Clocks Control our Transport Systems

  |   By

Getting from A to B has been a primary concern for societies ever since the first roads were built. Whether it is horseback, carriage, train, car or plane – transportation is what enables societies to grow, prosper and trade.

In today’s world, our transportation systems are highly complex due to the sheer numbers of people who are all trying to get somewhere – often at similar times such as rush hour. Keeping the motorways, highways and railways running, requires some sophisticated technology.

Traffic lights, speed cameras, electronic warning signs, and railway signals and point systems have to be synchronised for safety and efficiency. Any differences in time between traffic signals, for instance, could lead to traffic queues behind certain lights, and other roads remaining empty. While on the railways, if points systems are being controlled by an inaccurate clock, when the trains arrive the system may be unprepared or not have switched the line – leading to catastrophe.

Because of the need for secure, accurate and reliable time synchronisation on our transport systems, the technology that controls them is often synchronised to UTC using atomic clock time servers.

Most time servers that control such systems have to be secure so they make use of Network Time Protocol (NTP) and receive a secure time transmission either utilising atomic clocks on the GPS satellites (Global Positioning System) or by receiving a radio transmission from a physics laboratory such as NPL (National Physical Laboratory) or NIST (National Institute of Standards and Time).

In doing so, all traffic and rail management systems that operate on the same network are accurate to each other to within a few milliseconds of this atomic clock generated time and the NTP time servers that keep them synchronised ensures they stay that way, making minute adjustments to each system clock to cope with the drift.

NTP servers are also used by computer networks to ensure that all machines are synced together. By using a NTP time server on a network, it reduces the probability of errors and ensures the system is kept secure.

The Accuracy of the Speaking Clock

  |   By

The UK speaking clock has been around for nearly eighty years. It was started in 1936 when time keeping started to become more important to people’s lives. Initially available only in the London it was rolled out to the whole country during World War II.

There have been four people that have had honour of providing the permanent voice to the speaking clock over the last 70. And over 70 million calls are made to the speaking clock making it an important from of accurate time but have you ever wondered how accurate it is and where the time comes from and how accurate it is?

The speaking clock is controlled by a major British telecoms company who took over the General Post Office (GPO) and the time was originally supplied by the National Physical Laboratory (NPL) who also provide the MSF signal that NTP time servers use as a source of atomic clock synchronisation.

NPL no longer help with the speaking clock but the time is still controlled by NTP servers, either GPS or MSF, which ensures that the time you hear on the end of the telephone is accurate.

NTP servers are also commonly used by computer networks to ensure that IT systems, from traffic light signals to the office PC are all running an accurate form of time.

NTP time servers can either receive the MSF radio signal broadcast by NPL or, more commonly now, GPS signals beamed directly from space.

Often network administrators opt to use online NTP servers that send time signals over the internet but these are not as accurate and cause security problems so it is far better to have a dedicated NTP time server to control the time if you wish to have a computer network that is running accurately.

Using Atomic Clocks for Time Synchronisation

  |   By

The atomic clock is unrivalled in its chronological accuracy. No other method of maintaining time comes close to the precision of an atomic clock. These ultra-precise devices can keep time for thousands of years without losing a second in drift – in comparison to electronic clocks, perhaps the next most accurate devices, which can drift up to a second a day.

Atomic clocks are not practical devices to have around though. They use advanced technologies such as super-coolant liquids, lasers and vacuums – they also require a team of skilled technicians to keep the clocks running.

Atomic clocks are deployed in some technologies. The Global Positioning System (GPS) relies on atomic clocks that operate onboard the unmanned orbiting satellites. These are crucial for working out accurate distances. Because of the speed of light that the signals travel, a one second inaccuracy in any GPS atomic clock would lead to positing information being out by thousands of kilometres – but the actual accuracy of GPS is within a few metres.

While these wholly accurate and precise instruments for measuring time are unparalleled and the expensive of running such devices is unobtainable to most people, synchronising your technology to an atomic clock, in actual fact, is relatively simple.

The atomic clocks onboard the GPS satellites are easily utilised to synchronise many technologies to. The signals that are used to provide positioning information can also be used as a source of atomic clock time.

The simplest way to receive these signals is to use a GPS NTP server (Network Time Protocol). These NTP servers use the atomic clock time signal from the GPS satellites as a reference time, the protocol NTP is then used to distribute this time around a network, checking each device with the GPS time and adjusting to ensure accuracy.

Entire computer networks can be synchronised to the GPS atomic clock time by using just one NTP GPS server, ensuring that all devices are within milliseconds of the same time.

NTP and GPS-based Timing Solutions

  |   By

Ask anybody what the key to network timing is and you will probably get the response NTP (Network Time Protocol).  NTP is a protocol that distributes and checks the time on all network devices to a reference clock – and it is this reference which is the true key to network time synchronisation.

Whilst a version of NTP is easy to obtain – it is normally installed on most operating systems, or is otherwise free to download – but getting a source of time is where the true key to network time synchronisation lies.

Atomic clocks govern the global timescale UTC (Coordinated Universal Time) and it is this timescale that is best for network timing as synchronising all devices on a network to UTC is equivalent of having you network synchronised with every other UTC synced network on Earth.

So getting a source of UTC time is the true key to accurate network time synchronisation, so what are the options?

Internet Time Sources

The obvious choice for most NTP users, but internet time suffers from two major flaws; firstly, internet time operates through the firewall and is therefore fraught with security risks – if the time can get through your firewall, then other things can too. Secondly, internet time sources can be hit and miss with their accuracy.

Due to the fact most internet time sources are stratum 2 devices (they connect to another device that receives the UTC source time) and the distance from client to host can never be truly ascertained or accounted for – it can make them inaccurate – with some internet time sources minutes, hours and even days away from true UTC time.

Radio Referenced Time Server

Another source of UTC time which doesn’t suffer from either security or accuracy flaws is receiving the time from long wave radio signals that some country’s national physics laboratories broadcast. While these signals are available throughout the USA (courtesy of NIST) the UK (NPL) and several other European countries and can be picked up witha basic radio referenced NTP server they are not available everywhere and the signals can be difficult to receive in some urban locations or anywhere where there is electrical interference.

GPS-timing

For completely accurate, secure and a reliable source of UTC time there is no substitute for GPS time. GPS timing signals are beamed directly from atomic clocks onboard the GPS satellites (Global Positioning System) and received by GPS NTP time servers. These can then distribute the atomic clock time around the network.

GPS timing sources are accurate, secure and available literally anywhere on the planet 24 hours a day.

Windows Server and the Importance of NTP

  |   By

Windows Server is the most common operating system used by business networks. Whether it is the latest Windows Server 2008 or a previous incarnation such as 2003, most computer networks used in trade and business have a version.

These network operating systems make use of the time synchronization protocol NTP (Network Time Protocol) to ensure synchronicity between all devices connected to the network. This is vital in the modern world of global communication and trade as a lack of synchronization can cause untold problems; data can get lost, errors can go undetected, debugging becomes near impossible and time sensitive transactions can fail if there is no synchronization.

NTP works by selecting a single time source and it be checking the time on all devices on the network, and adjusting them, it ensures the time is synchronised throughout. NTP is capable of keeping all PCs, routers and other devices on a network to within a few milliseconds of each other.

The only requirement for network administrators is to select a time source – and this is where many IT professionals commonly go wrong.

Internet time servers

Any source of time to synchronize a network to should be UTC (Coordinated Universal Time) which is a global timescale controlled by the world’s most accurate atomic clocks and the number one source for finding a UTC time server is the internet.

And many network administrators opt to use these online time servers thinking they are an accurate and secure source of time; however, this is not strictly the case. Internet time servers send the time signal through the network firewall which means viruses and malicious users can take advantage of this ‘hole.’

Another problem with internet time servers is that their accuracy can’t be guaranteed. Often they are not as accurate as a profession network requires and factors such as distance away from the host can make differences in the time.

Dedicated NTP time server

Dedicated NTP time servers, however, get the time directly from atomic clocks – either from the GPS network or via secure radio transmissions from national physics laboratories. These signals are millisecond accurate and 100% secure.

For anyone running a network using Windows Server 2008 or other Microsoft operating system should seriously consider using a dedicated NTP server rather than the internet to ensure accuracy, reliability and security.

Solar Flares and the Vulnerability of GPS

  |   By

Whilst GPS is commonly associated with satellite navigation and wayfinding, many technologies and computer networks rely on the GPS satellite system for a source of accurate time.

GPS time servers utilise the onboard atomic clocks of the global positing satellites and use this stable and accurate time source as a basis for their NTP synchronisation (Network Time Protocol)

GPS has become the preferred source of atomic clock time for many network operators. There are other methods where UTC (Coordinated Universal Time) can be used; radio signals and across the internet to name but two sources, but none is as secure or readily available as GPS.

Unlike radio signals, GPS is available everywhere on the planet, is never down for scheduled maintenance and is not commonly vulnerable to interference. It also doesn’t have any security implications like connecting across an internet firewall to an online time server can.

However, this doesn’t mean GPS is completely invulnerable as recent news reports have suggested.
It has been recently reported that a sunspot (sunspot 1092) the size of the Earth has flared up and a massive coronal ejection (solar flare), described in the press as a “solar tsunami” which was suggested to be large enough to satellites and wreck power and communications grids.

Solar activity, such as sunspots and solar flares (ejected hot plumes of plasma and radiation from the sun), have long been known to be able to damage and even disable satellites.

GPS is particularly vulnerable because of the high orbits of geostationary satellites (some 22,000 miles up) this leaves them unprotected by the earth’s magnetic field.

However, following the recent solar activity there has been no reported damage to the GPS system but as so many people rely on satellite navigation and GPS time for NTP servers could a future solar storm lead to havoc on Earth?

Well the short answer is yes; GPS satellites have been in orbit for several decades and while redundant satellites were introduced into the system many have been used up due to previous failures and it would only take a couple of disabled satellite to cause real problems for the network.

Fortunately, help is at hand as the Europeans, Russians and Chinese are all working on their own GPS equivalents which should work hand-in-hand with the American GPS network allowing GPS receivers to pick and choose from all four GNSS networks (Global Navigational Satellite Systems) ensuring that even if a really violent solar storm hits in the future there will be more than enough geo stationary satellites to ensure no loss of signal.

Competition for GPS Ever Closer

  |   By

Written by Richard N Williams for Galleon Systems

Since its release to the civilian population the Global Positioning System (GPS) has greatly improved and enhanced our world. From satellite navigation to the precise time used by NTP servers (Network Time Protocol) and much or our modern world’s technology.

And GPS has for several years been the only Global Navigation Satellite Systems (GNSS) and is used the world over, however, times are now changing.

There are now three other GNSS systems on the horizon that will not only act as competition for GPS but will also increase its precision and accuracy.

Glonass is a Russian GNSS system that was developed during the Cold War. However, after the fall of the Soviet Union the system fell into disrepair but it has finally been revamped and is now back up and running.

The Glonass system is now being used as a navigational aid by Russian airlines and their emergency services with in-car GNSS receivers also being rolled out for the general population to use. And the Glonass system is also allowing time synchronisation using NTP time servers as it uses the same atomic clock technology as GPS.

And Glonass is not the only competition for GPS either. The European Galileo system is on track with the first satellites expected to be launched at the end of 2010 and the Chinese Compass system is also expected to be online soon which will make four fully operational GNSS systems orbiting above Earth’s orbit.

And this is good news for those interested in ultra high time synchronisation as the systems should all be interoperable meaning anyone looking to GNSS satellites can use multiple systems to ensure even greater accuracy.

It is expected that interoperable GNSS NTP time servers will soon be available to make use of these new technologies.

Choosing a Source of Time for Computer Network Synchronization

  |   By

You don’t need me to tell you how important computer network time synchronization is. If you are reading this then you are probably well aware of the importance in ensuring all your computers, routers and devices on your network are running the same time.

Failure to synchronize a network can cause all sorts of problems, although with a lack of synchronicity the problems may go unnoticed as error finding and debugging a network can be nigh on impossible without a source of synchronized time.

There are multiple options for finding a source of accurate time too. Most time sources used for synchronisation are a source of UTC (Coordinated Universal Time) which is the international timescale.
However, there are pro’s and con’s to all sources:

Internet time

There are an almost an endless number of sources of UTC time on the internet. Some of these time sources are wholly inaccurate and unreliable but there are some trusted sources put out by people like NIST (National Institute for Standards and Time) and Microsoft.

However, regardless of how trusted the time source is, there are two problems with internet time sources. Firstly, an internet time server is actually a stratum 2 device. In other words, an internet time server is connected to another time server that gets its time from an atomic clock, usually from one of the sources below. So an internet source of time is never going to be as accurate or precise as using a stratum 1 time server yourself.

Secondly, and more importantly, internet sources of time operate through the firewall so a potential security breach is available to any malicious user who wishes to take advantage of the open ports.

GPS Time

GPS time is far more secure. Not only is a GPS time signal available anywhere with a line of sight view of the sky, but also GPS time signals can be received externally to the network. By using a GPS time server the GPS time signals can be received and by using NTP (Network Time Protocol) this time can be converted to UTC (GPS time is currently 17 seconds exactly behind GPS time) then distributed around the network.

MSF/WWVB Time

Radio broadcasts in long wave are transmitted by several national physics labs. NIST and the UK’s NPL are two such organisations and they transmit the UTC signals MSF (UK) and WWVB (USA) which can be received and utilised by a radio referenced NTP server.