Our Time and Travel Reliance on GPS

By on

Since the Global Positioning System (GPS) first became available for civilian use in the early 1990’s, it has become one of the most commonly used modern pieces of technology. Millions of motorists use satellite navigation, while shipping and airline industries are heavily dependent on it.

And its not just wayfinding that we use GPS for, many technologies from computer network to traffic lights, to CCTV cameras, use the GPS satellite transmissions as a method of controlling time—using the onboard atomic clocks to synchronise these technologies together.

While plenty of advantages to using GPS for both navigation and time synchronisation exist, it’s accurate in both time and positioning and is available, literally everywhere on the planet with a clear view to the sky. However, a recent report by the Royal Academy of Engineering this month has warned that the UK is becoming dangerously dependent on the USA run GPS system.

The report suggests that with so much of our technology now reliant on GPS such as road, rail and shipping equipment, there is a possibility that any loss in GPS signal could lead to loss of life.

And GPS is vulnerable to failure. Not only can GPS satellites be knocked out by solar flares and other cosmological phenomenon, but GPS signals can be blocked by accidental interference or even deliberate jamming.

If the GPS system does fail then navigation systems could become inaccurate leading to accidents, however, for technologies that use GPS as a timing signal, and these range from important systems at air traffic control, to the average business computer network, then fortunately, things should not be that disastrous.

This is because GPS time servers that receive the satellite’s signal use NTP (Network Time Protocol). NTP is the protocol that distributes the GPS time signal around a network, adjusting the system clocks on all the devices on the network to ensure they are synchronised. However, if the signal is lost, then NTP can still remain accurate, calculating the best average of the system clocks. Consequently if the GPS signal does go down, computers can still remain accurate to within a second for several days.

For critical systems, however, where extremely precise time is required constantly, dual NTP time servers are commonly used. Dual time servers not only receive a signal from GPS, but also can pick-up the time standard radio transmissions broadcast by organisations such as NPL or NIST.

A Galleon Systems NTP GPS Time Server
hello

This post was written by:

Richard N Williams is a technical author and a specialist in the NTP Server and Time Synchronisation industry. Richard N Williams on Google+