Category: time server

Independent NTP Time Servers for Time Synchronisation

  |   By

Network time protocol (NTP) is used as a synchronisation tool by most computer networks. NTP distributes a single time source around a network and ensures all devices are running in synchronisation with it. NTP is highly accurate and able to keep all machines on a network to within a few milliseconds of the time source. However, where this time source comes from can lead to problems in time synchronisation within a network.

… Continue reading

Google Finds Innovative Way to Avoid Leap Seconds

  |   By

Leap Seconds have been in use since the development of atomic clocks and the introduction of the global timescale UTC (Coordinated Universal Time). Leap Seconds prevent the actual time as told by atomic clocks and the physical time, governed by the sun being highest at noon, from drifting apart.

Since UTC began in the 1970’s when UTC was introduced, 24 Leap Seconds have been added. Leap seconds are a point of controversy, but without them, the day would slowly drift into night (albeit after many centuries); however, they do cause problems for some technologies.

NTP servers (Network Time Protocol) implement Leap Seconds by repeating the final second of the day when a Leap Second is introduced. While Leap Second introduction is a rare event, occurring only once or twice a year, for some complex systems that process thousands of events a second this repetition causes problems.

For search engine giants, Google, Leap Seconds can lead to their systems from working during this second, such as in 2005 when some of its clustered systems stopped accepting work. While this didn’t lead to their site from going down, Google wanted to address the problem to prevent any future problems caused by this chronological fudge.

Its solution was to write a program that essentially lied to their computer servers during the day of a Leap Second, making the systems believe the time was slightly ahead of what the NTP servers were telling it.

This gradual speeding up time meant that at the end of a day, when a Leap Second is added, Google’s timeservers do not have to repeat the extra second as the time on its servers would already be a second behind by that point.

Galleon GPS NTP server

Whilst Google’s solution to the Leap Second is ingenious, for most computer systems Leap Seconds cause no problems at all. With a computer network synchronised with an NTP server, Leap Seconds are adjusted automatically at the end of a day and occur only rarely, so most computer systems never notice this small hiccup in time.

 

The Atomic Clock History Accuracy and Uses

  |   By

Most people will have heard of atomic clocks, most people, probably without realising have even used them; however, I doubt many people reading this will have ever seen one. Atomic clocks are highly technical and complicated pieces of machinery. Relying on vacuums, super-coolants such as liquid nitrogen and even lasers, most atomic clocks are only found in laboratories such as NIST (National Institute for Standards and Time) in the US, or NPL (National Physical Laboratory) in the UK.

NPL's atomic clock

No other form of timekeeping is as accurate as an atomic clock. Atomic clocks form the basis of world’s global timescale UTC (Coordinated Universal Time). Even the length Earth’s spin requires manipulation by the addition of leap seconds to UTC to keep the day synchronised.

Atomic clocks work by using the oscillating changes of atoms during different energy states. Caesium is the preferred atom used in atomic clocks, which oscillates 9,192,631,770 times a second. This is a constant effect too, so much so that a second is now defined by this many oscillations of the caesium atom.

Louis Essen built the first accurate atomic clock in 1955 at the National Physical Laboratory in the UK, since then atomic clocks have become increasingly more accurate with modern atomic clocks able to maintain time for over a million years without ever losing a second.

In 1961, UTC became the world’s global timescale, and by 1967, the International System of Units adopted the Caesium frequency as the official second.

Since then, atomic clocks have become part of modern technology. Onboard every GPS satellite, atomic clocks beam time signals to Earth, enabling satellite navigation systems in car, boats and aeroplanes to judge their locations precisely.

UTC time is also essential for trade in the modern world. With computer networks speaking to each other across timezones, using atomic clocks as a reference prevents errors, ensures security and provides reliable data transfer.

Receiving a signal from an atomic clock for computer time synchronisation is incredibly easy. NTP time servers that receive the time signal from GPS satellites, or those broadcast on radio waves from places NPL and NIST, enable computer networks across the globe to keep secure and accurate time.

British Atomic Clock Leads Race for Accuracy

  |   By

Researchers have discovered that the British atomic clock controlled by the UK’s National Physical Laboratory (NPL) is the most accurate in the world.

NPL’s CsF2 caesium fountain atomic clock is so accurate that it wouldn’t drift by a second in 138 million years, nearly twice as accurate as first thought.

Researchers have now discovered the clock is accurate to one part in 4,300,000,000,000,000 making it the most accurate atomic clock in the world.

The CsF2 clock uses the energy state of caesium atoms to keep time. With a frequency of 9,192,631,770 peaks and troughs every second, this resonance now governs the international standard for an official second.

The international standard of time—UTC—is governed by six atomic clocks, including the CsF2, two clocks in France, one in Germany and one in the USA, so this unexpected increase in accuracy means the global timescale is even more reliable than first thought.

UTC is essential for modern technologies, especially with so much global communication and trade being conducted across the internet, across borders, and across timezones.

UTC enables separate computer networks in different parts of the world to keep exactly the same time, and because of its importance accuracy and precision is essential, especially when you consider the types of transactions now conducted online, such as the buying of stocks and shares and global banking.

Receiving UTC requires the use of a time server and the protocol NTP (Network Time Protocol). Time servers receive a source of UTC direct from atomic clocks sources such as NPL, who broadcast a time signal over long wave radio, and the GPS network (GPS satellites all transmit atomic clock time signals, which is how satellite navigation systems calculate position by working out the difference in time between multiple GPS signals.)

NTP keeps all computers accurate to UTC by continuously checking each system clock and adjusting for any drift compared to the UTC time signal. By using an NTP time server, a network of computers is able to remain within a few milliseconds of UTC preventing any errors, ensuring security and providing an attestable source of accurate time.

 

Hackers and Time Servers

  |   By

Computer hacking is a common subject in the news. Some of the biggest companies have fallen victim to hackers, and for a myriad of reasons. Protecting computer networks from invasion from malicious users is an expensive and sophisticated industry as hackers use many methods to invade a system.

Various forms of security exist to defend against unauthorised access to computer networks such as antivirus software and firewalls.

One area often overlooked, however, is where a computer network gets it source of time from, which can often be a vulnerable aspect to a network and a way in for hackers.

Most computer networks use NTP (Network Time Protocol) as a method of keeping synchronised. NTP is excellent at keeping computers at the same time, often to within a few milliseconds, but is dependent on a single source of time.

Because computer networks from different organisations need to communicate together, having the same source of time makes sense, which is the reason most computer networks synchronise to a source of UTC (Coordinated Universal Time).

UTC, the world’s global timescale, is kept true by atomic clocks and various methods of utilising UTC are available.

Quite often, computer networks use an internet time source to obtain UTC but this is often when they run into security issues.

Using internet time sources leave a computer network open to several vulnerabilities. Firstly, to allow access to the internet time source, a port needs keeping open in the system firewall (UDP 123). As with any open port, unauthorised users could take advantage of this, using the open port as a way into the network.

Secondly, if the internet time source itself if tampered with, such as by BGP injection (Border Gateway Protocol) this could lead to all sorts of problems. By telling internet time servers it was a different time or date, major havoc could ensue with data getting lost, system crashes—a type of Y2K effect!

Finally, internet time servers can’t be authenticated by NTP and can also be inaccurate. Vulnerable to latency and affected to distance, errors can also occur; earlier this year some reputable time servers lost several minutes, leading to thousands of computer networks receiving the wrong time.

To ensure complete protection, dedicated and external time servers, such as Galleon’s NTS 6001 are the only secure method of receiving UTC. Using GPS (or a radio transmission) an external NTP time server can’t be manipulated by malicious users, is accurate to a few milliseconds, can’t drift and is not susceptible to timing errors.

 

75 Years of the Speaking Clock

  |   By

Britain’s speaking clock celebrates its 75th birthday this week, with the service still providing the time to over 30 million callers a year.

The service, available by dialling 123 on any BT landline (British Telecom), began in 1936 when the General Post Office (GPO) controlled the telephone network. Back then, most people used mechanical clocks, which were prone to drift. Today, despite the prevalence of digital clocks, mobile phones, computers and a myriad number of other devices, the BT speaking clock still provides the time to 30 million callers a year, and other networks implement their own speaking clock systems.

Much of the speaking clock’s continuing success is perhaps down to the accuracy that it keeps. The modern speaking clock is accurate to five milliseconds (5/1000ths of a second), and kept precise by the atomic clock signals provided by NPL (National Physical Laboratory) and the GPS network.

But the announcer declaring the time ‘after the third stroke’ provides people with a human voice, something other time-telling methods don’t provide, and may have something to do with why so many people still use it.

Four people have had the honour of providing the voice for the speaking clock; the current voice of the BT clock is Sara Mendes da Costa, who has provided the voice since 2007.

Of course, many modern technologies require an accurate source of time. Computer networks that need to keep synchronised, for security reasons and to prevent of errors, require a source of atomic clock time.

Network time servers, commonly called NTP servers after Network Time Protocol that distributes the time across the computers on a network, use either GPS signals, which contain atomic clock time signals, or by radio signals broadcast by places like NPL and NIST (National Institute for Standards and Time) in the US.

Clocks that Changed Time

  |   By

If you’ve ever tried to keep track of time without a watch or clock, you’ll realise just how difficult it can be. Over a few hours, you may get to within half an hour of the right time, but precise time is very difficult to measure without some form of chronological device.

Before the use of clocks, keeping time was incredibly difficult, and even losing track of days of the years became easy to do unless you kept as daily tally. But the development of accurate timepieces took a long time, but several key steps in chronology evolved enabling closer and closer time measurements.

Today, with the benefit of atomic clocks, NTP servers and GPS clock systems, time can be monitored to within a billionth of a second (nanosecond), but this sort of accuracy has taken mankind thousands of years to accomplish.

 

Stonehenge–ancient timekeeping

Stonehenge

With no appointments to keep or a need to arrive at work on time, prehistoric man had little need for knowing the time of day. But when agriculture started, knowing when to plant crops became essential for survival. The first chronological devices such as Stonehenge are believed to have been built for such a purpose.

Identifying the longest and shortest days of the year (solstices) enabled early farmers to calculate when to plant their crops, and probably provided a lot of spiritual significance to such events.

Sundials

The provided the first attempts at keeping track of time throughout the day. Early man realised the sun moved across the sky at regular paths so they used it as a method of chronology. Sundials came in all sorts of guises, from obelisks that cast huge shadows to small ornamental sundials.

Mechanical Clock

The first true attempt at using mechanical clocks appeared in the thirteenth century. These used escapement mechanisms and weights to keep time, but the accuracy of these early clocks meant they’d lose over an hour a day.

Pendulum Clock

Clocks first became reliable and accurate when pendulums began appearing in the seventeenth century. While they would still drift, the swinging weight of pendulums meant that these clocks could keep track of first minutes, and then the seconds as engineering developed.

Electronic Clocks

Electronic clocks using quartz or other minerals enabled accuracy to parts of a second and enabled scaling down of accurate clocks to wristwatch size. While mechanical watches existed, they would drift too much and required constant winding. With electronic clocks, for the first time, true hassle free accuracy was achieved.

Atomic Clocks

Keeping time to thousands, millions and even billion parts of a second came when the first atomic clocks arrived in the 1950’s. Atomic clocks were even more accurate than the rotation of the Earth so Leap Seconds needed developing to make sure the global time based on atomic clocks, Coordinated Universal Time (UTC) matched the path of the sun across the sky.

 

Atomic Clocks now Accurate to a Quintillionth of a Second?

  |   By

Development in clock accuracy seems to increase exponentially. From the early mechanical clocks, there were only accurate to about half an hour a day, to electronic clocks developed at the turn of the century that only drifted by a second. By the 1950’s, atomic clocks were developed that became accurate to thousandths of a second and year on year they have becoming ever more precise.

Currently, the most accurate atomic clock in existence, developed by NIST (National Institute for Standards and Time) loses a second every 3.7 billion years; however, using new calculations researchers suggest they can now come up with a calculation that could lead to an atomic clock that would be so accurate it would lose a second only every 37 billion years (three times longer than the universe has been in existence).

This would make the atomic clock accurate to a quintillionth of a second (1,000,000,000,000,000,000th of a second or 1x 1018). The new calculations that could aid the development of this sort of precision has been developed by studying the effects of temperature on the miniscule atoms and electrons that are used to keep the atomic clocks ‘ticking’. By working out the effects of variables like temperature, the researchers claim to be able to improve the accuracy of atomic clock systems; however, what possible uses does this accuracy have?

Atomic clock accuracy is becoming ever relevant in our high technology world. Not only do technologies like GPS and broadband data streams rely on precise atomic clock timing but studying physics and quantum mechanics requires high levels of accuracy enabling scientists to understand the origins of the universe.

To utilise an atomic clock time source, for precise technologies or computer network synchronisation, the simplest solution is to use a network time server; these devices receive a time stamp direct from an atomic clock source, such as GPS or radio signals broadcast by the likes of NIST or NPL (National Physical Laboratory).

These time servers use NTP (Network Time Protocol) to distribute the time around a network and ensure there is no drift, making it possible for your computer network to be kept accurate to within milliseconds of an atomic clock source.

Network Time Server

Most Accurate Atomic Clock Yet

  |   By

A new atomic clock as accurate as any produced has been developed by the University of Tokyo which is so accurate it can measure differences in Earth’s gravitational field—reports the journal Nature Photonics.

While atomic clocks are highly accurate, and are used to define the international timescale UTC (Coordinated Universal Time), which many computer networks rely on to synchronise their NTP servers to, they are finite in their accuracy.

Atomic clock use the oscillations of atoms emitted during the change between two energy states, but currently they are limited by the Dick effect, where noise and interference generated by the lasers used to read the frequency of the clock, gradually affect the time.

The new optical lattice clocks, developed by Professor Hidetoshi Katori and his team at the University of Tokyo, get around this problem by trapping the oscillating atoms in an optical lattice produced by a laser field. This makes the clock extremely stable, and incredibly accurate.

Indeed the clock is so accurate Professor Katori and his team suggest that not only could it man future GPS systems become accurate to within a couple of inches, but can also measure the difference in the gravitation of the Earth.

As discovered by Einstein in his Special and General Theories of Relativity, time is affected by the strength of gravitational fields. The stronger the gravity of a body, the more time and space is bent, slowing down time.

Professor Katori and his team suggest that this means their clocks could be used to find oil deposits below the Earth, as oil is a lower density, and therefore has a weaker gravity than rock.

Despite the Dick Effect, traditional atomic clocks currently used to govern UTC and to synchronise computer networks via NTP time servers, are still highly accurate and will not drift by a second in over 100,000 years, still accurate enough for the majority of precise time requirements.

However, a century ago the most accurate clock available was an electronic quartz clock that would drift by a second a day, but as technology developed more and more accurate time pieces were required, so in the future, it is highly possible that these new generation of atomic clocks will be the norm.