Category: NTP GPS time

Time to get accurate Atomic clock time servers for computer networks

  |   By

Accurate and precise time is increasingly becoming a necessity for computer systems. From corporate networks to public service technologies such as ATMs, traffic lights or CCTV cameras – precise time is what keeps them ticking.

Inaccurate or unsynchronised time is the root cause for many technology breakdowns and failures.  For instance, failing to synchronize a traffic lights system can lead to all sorts of confusion of the lights change at the wrong time – and the consequences for systems belonging to industries such as air traffic control could be even worse.

And even a standard computer network such as those used in most offices requires accurate synchronisation to prevent errors, enable debugging and to ensure the system is secure.

Most system administrators are now aware of the importance of accurate and precise time synchronisation but getting a source of accurate time is often where many people make mistakes.

Many network administrators are aware of the time protocol NTP (Network Time Protocol) which is used to ensure accurate synchronisation between computers.

However, many administrators make the mistake of using a source of time from across the internet to distribute with NTP – a common pitfall that can have disastrous consequences.

The internet is not the best source of tine. While it is true, many online NTP servers are available as a source of atomic time or UTC (Coordinated Universal Time) but are they accurate. The truth is it is almost impossible to know. Internet time sources can be affected by the distance of the client (the network) from the time source – it also can’t be authenticated by NTP.

Even more important, internet time sources operate through the firewall which can allow the time signal to be hijacked by malicious programs.

The only secure and accurate method of synchronising a computer network or other technology system is to use an NTP server. These devices receive an external atomic clock time signal often by GPS or even by radio transmissions.

These signals are come direct from atomic clocks so are highly accurate they also can’t be hijacked as they are not connected to the internet.

Do I Really Need A NTP Server For Time Synchronisation?

  |   By

Time synchronisation is a critical aspect to modern computing, especially when computers are on a network or need to communicate with other networked machines.

Timestamps are crucial for computers to acknowledge when an event occurred and it is the only information they have to ascertain if an event has occurred. Without accurate time stamps the consequences can include:

• Loss of data
• Difficult to log errors
• Difficult to debug
• Failure to save
• Time sensitive applications may fail

Modern operating systems like Windows 7 have automatic synchronisation software already installed. W32Time has been a part of Microsoft’s different generations of operating systems for some time but in Windows 7 it is set to be automatically on (Rather than the user having to set it) – synchronising your PC straight out of the box.

With such NTP (Network Time Protocol) based synchronisation available by using internet time servers (normally Microsoft and NIST) many people may wonder if a dedicated time server is still required.

Problems with Internet Time Servers

There are several drawbacks to using this Internet time as a source of UTC (Coordinated Universal Time – the global timescale often referred to as GMT).

The first and most important drawback to internet time servers is their location through the firewall. Having to rely on a source of time across the internet means keeping the TCP port open – a crucial security weakness that can be used by malicious users or bots.

Another downside to internet time servers is their lack of guaranteed accuracy. While places like NIST (National Institute for Standards and Time) and Microsoft have reliable and accurate time servers – the accuracy can be dependent on how far away you are peering from. And many other time servers available as a source of internet time are less reliable – and as NTP can’t authenticate a time signal from across the internet – it can be difficult to assess.

Benefits of an External NTP Server

Dedicated external NTP servers are far more secure. They receive their tie from GPS satellites of Long Wave transmissions so the signals can’t be intercepted by computer hackers or malicious software. Also, NTP can authenticate the signals ensuring you know where they are coming from and how accurate they are.

With time being so important on modern networked computers, taking a risk with internet time may cost a lot more than any minor investment in a dedicated NTP time server.

Competition for GPS Ever Closer

  |   By

Written by Richard N Williams for Galleon Systems

Since its release to the civilian population the Global Positioning System (GPS) has greatly improved and enhanced our world. From satellite navigation to the precise time used by NTP servers (Network Time Protocol) and much or our modern world’s technology.

And GPS has for several years been the only Global Navigation Satellite Systems (GNSS) and is used the world over, however, times are now changing.

There are now three other GNSS systems on the horizon that will not only act as competition for GPS but will also increase its precision and accuracy.

Glonass is a Russian GNSS system that was developed during the Cold War. However, after the fall of the Soviet Union the system fell into disrepair but it has finally been revamped and is now back up and running.

The Glonass system is now being used as a navigational aid by Russian airlines and their emergency services with in-car GNSS receivers also being rolled out for the general population to use. And the Glonass system is also allowing time synchronisation using NTP time servers as it uses the same atomic clock technology as GPS.

And Glonass is not the only competition for GPS either. The European Galileo system is on track with the first satellites expected to be launched at the end of 2010 and the Chinese Compass system is also expected to be online soon which will make four fully operational GNSS systems orbiting above Earth’s orbit.

And this is good news for those interested in ultra high time synchronisation as the systems should all be interoperable meaning anyone looking to GNSS satellites can use multiple systems to ensure even greater accuracy.

It is expected that interoperable GNSS NTP time servers will soon be available to make use of these new technologies.

European Rival to GPS takes a Further Step Forward

  |   By

The long awaited European rival to the USA Global Positioning System, Galileo, has taken a step forward to realisation with the delivery of the payload for first satellite.

The payload, which contains the “brains” of the Galileo satellite, includes the atomic clocks that are the basis for all global navigation satellite systems (GNSS) and provide both the positing information and the GPS time signal used by so many GPS NTP time servers for network synchronisation.

Galileo is set to not only rival the current American run GPS system, but for time synchronisation applications it is expected to operate in tandem ensuring even greater accuracy for those seeking a source of UTC time.

Galileo has undergone a lot of uncertainty since the multi-billion Euro project was first designed over a decade ago but the delivery of the first satellite’s payload to Rome, where the equipment is being finalised in preparation for launch early next year, is a real boon to the project which has often fallen into doubt.

Just like GPS, Galileo will be a fully operation navigational satellite system but will offer even greater accuracy that its aging predecessor and provide Europe with their own navigational system that isn’t owned and controlled by the US military.

As well as the positing information that will be used by motorists, pilots and other travellers, Galileo will also provide a secure and accurate source of time for the world’s computer networks and technologies to ensure synchronicity.

Currently, GPS is alone in providing this secure service, although radio transmissions in some countries provide an alternative to the GPS time server signals, although they are not as wide spread as GPS.

The first Galileo satellite is expected to reach orbit in early 2011, with the entire network planned to be operation in 2014 – although if past experiences with the project are anything to go on – you should expect at least a few delays.

Choosing a Source of Time for an NTP Synchronization

  |   By

Accurate time is essential in the modern world of internet banking, online auctions and global finance. Any computer network that is involved in global communication needs to have an accurate source of the global timescale UTC (Coordinated Universal Time) to be able to talk to other networks.

Receiving UTC is simple enough. It is available from multiple sources but some are more reliable than others:

Internet Time Sources

The internet is awash with time sources. These vary in reliability and accuracy but some trusted organisations like NIST (National Institute of Standards and Time) and Microsoft. However, there are disadvantages with internet time sources:

Reliability – The demand for internet sources of UTC often means it can be difficult to access them

Accuracy – most internet time servers are stratum 2 devices which means they rely on a source of time themselves. Often errors can occur and many sources of time can be very inaccurate.

Security – Perhaps the biggest issue with internet time sources is the risk they pose to security. To receive a time stamp from across the internet the firewall needs to have an opening to allow the signals to pass through; this can lead to malicious users taking advantage.

Radio Referenced Time Servers.

A secure method of receiving UTC time stamps is available by using a NTP time server that can receive radio signals from labs like NIST and NPL (National Physical Laboratory. Many countries have these broadcasted time signals which are highly accurate, reliable and secure.

GPS Time servers

Another source for dedicated time servers is GPS. The big advantage of a GPS NTP time server is that the time source is available everywhere on the planet with a clear view of the sky. GPS time servers are also highly accurate, reliable and just as secure as radio referenced time servers.

Technologies that rely on Atomic Clocks (Part 1)

  |   By

Atomic clocks are the most accurate timekeeping devices known to man. There accuracy is incomparable to other clocks and chronometers in that whilst even the most sophisticated electronic clock will drift by a second every week or two, the most modern atomic clocks can keep running for thousands of years and not lose even a fraction of a second.

The accuracy of an atomic clock is down to what they use as their basis for time measurement. Instead of relying on an electronic current running through a crystal like an electronic clock, an atomic clock uses the hyperfine transition of an atom in two energy states. Whilst this may sound complicated, it is just an unfaltering reverberation that ‘ticks’ over 9 billion times each second, every second.

But why such accuracy really necessary and what technologies are atomic clocks employed in?

It is by examining the technologies that utilise atomic clocks that we can see why such high levels of accuracy are required.

GPS – Satellite navigation

Satellite navigation is a huge industry now. Once just a technology for the military and aviators, GPS satellite navigation is now used by road users across the globe. However, the navigational information provided by satellite navigation systems like GPS is solely reliant on the accuracy of atomic clocks.

GPS works by triangulating several timing signals that are deployed from atomic clocks onboard the GPS satellites. By working out when the timing signal was released from the satellite the satellite navigational receiver can just how far away it is from the satellite and by using multiple signals calculate where it is in the world.

Because of these timing signals travel at the speed of light, just one second inaccuracy within the timing signals could lead to the positing information being thousands of miles out. It is testament to the accuracy of GPS atomic clocks that currently a satellite navigation receiver is accurate to within five metres.

MSF Downtime on March 11

  |   By

The National Physical Laboratory has announced scheduled maintenance this week (Thursday) meaning the MSF60kHz time and frequency signal will be temporarily turned off to allow the maintenance to be conducted in safety at the Anthorn radio Station in Cumbria.

Normally these scheduled maintenance periods only last a few hours and should not cause any disturbance to anybody relying on the MSF signal for timing applications.
NTP (Network Time Protocol) is well suited to these temporary losses of signal and little if no drift should be experienced by any NTP time server user.

However, there are some high level users of network time servers or may have concerns on the accuracy of their technology during these scheduled periods of no signal. There is another solution for ensuring a continuous, secure and equally accurate time signal is always being used.

GPS, most commonly used for navigation and wayfinding it actually an atomic clock based technology. Each of the GPS satellites broadcasts a signal from their onboard atomic clock which is used by satellite navigation devices that work out the location through triangulation.

These GPS signals can also be received by a GPS NTP time server. Just as MSF or other radio signal time servers receive the external signal from the Anthorn transmitter, GPS time servers can receive this accurate and external signal from the satellites.

Unlike the radio broadcasts, GPS should never go down although it can sometimes be impractical to receive the signal as a GPS antenna needs a clear view of the sky and therefore should preferably be on the roof.

For those wanting to make doubly sure there is never a period when a signal is not being received by the NTP server, a dual time server can be used. These pick up both radio and GPS transmissions and the onboard NTP daemon calculates the most accurate time from them both.

The Vulnerability of GPS

  |   By

An increase in GPS ‘attacks’ has been causing some concern amongst the scientific community.  GPS, whilst a highly accurate and reliable system of transmitting time and positing information, relies on very weak signals that are being hampered by interference from the Earth.

Both unintentional interference such as from pirate radio stations or intentional deliberate ‘jamming’ by criminals is still rare but as technology that can hamper GPS signals becomes more readily available, the situation is expected to get worse.

And while the effects of signal failure of the GPS system may have obvious results for people who use it for navigation (ending up in the wrong location or getting lost) it could have more serious and profound repercussions for the technologies that rely on GPS for time signals.

As so many technologies now rely on GPS timing signals from telephone networks, the internet, banking and traffic lights and even our power grid any signal failure no matter how briefly, could cause serious problems.

The main problem with the GPS signal is that it is very weak and as it comes from space bound satellites, little can be done to boost the signal so any similar frequency being broadcast in a local area can easily drown out GPS.

However, GPS is not the only accurate and secure method of receiving the time from an atomic clock source. Many national physics laboratories from across the globe broadcast atomic clock signals via radio waves (usually long wave). In the USA these signals are broadcast by NIST (National Institute for Standards and Time (known as WWVB) whilst in the UK, it’s MSF signal is broadcast by NPL (National Physical Laboratory).

Dual time servers that can receive both signals are available and are a safer bet for any high technology company that can’t afford to risk losing a time signal.

Network Time Protocol and Computer Time Synchronization

  |   By

Ask any network administrator or IT engineer and ask them how important network time synchronization is and you’ll normally get the same answer – very.

Time is used in almost all aspects of computing for logging when events have happened. In fact timestamps are the only reference a computer can use to keep tracks of tasks it has done and those that it has yet to do.

When networks are unsynchronized the result can be a real headache for anybody tasked with debugging them. Data can be often lost, applications fail to commence, error logging is next to impossible, not to mention the security vulnerabilities that can result if there is no synchronized network time.

NTP (Network Time Protocol) is the leading time synchronisation application having been around since the 1980’s. It has been constantly developed and is used by virtually every computer network that requires accurate time.

Most operating systems have a version of NTP already installed and using it to synchronise a single computer is relatively straight forward by using the options in the clock settings or task bar.

However, by using the inbuilt NTP application or daemon on a computer will result in the device using a source of internet time as a timing reference. This is all well and good for single desk top machines but on a network a more secure solution is required.

It is vital on any computer network that there are no vulnerabilities in the firewall which can lead to attacks from malicious users. Keeping a port open to communicate with an internet timing source is one method an attacker can use to enter a network.

Fortunately there are alternatives to using the internet as a timing source. Atomic clock time signals can be received using long wave radio or GPS transmissions.

Dedicated NTP time server devices are available that make the process of time synchronisation extremely easy as the NTP servers receives the time (externally to the firewall) and can then distribute to all machines on a network – this is done securely and accurately with most networks synchronised to an NTP server working to within a few milliseconds of each other.

Choosing a Time Server for your Network

  |   By

Any network administrator will tell you how important time synchronization is for a modern computer network. Computers rely on the time for nearly everything, especially in today’s age of online trading and global communication where accuracy is essential.

Failing to ensure that computers are accurately synced together could lead to all manner of problems: data loss, security vulnerabilities, unable to conduct time sensitive transactions and difficulties debugging can all be caused by a lack of, or not adequate enough, time synchronization.

But ensuring every computer on a network has the exact same time is simple thanks to two technologies: the atomic clock and the NTP server (Network Time Protocol).

Atomic clocks are extremely accurate chronometers. They can keep time and not drift by as much of a second in thousands of years and it is this accuracy that has made possible technologies and applications such as satellite navigation, online trading and GPS.

Time synchronization for computer networks is controlled by the network time server, commonly referred to as the NTP server after the time synchronization protocol they use, Network Time Protocol.
When it comes to choosing a time server, there are really only two real type – the radio reference NTP time server and the GPS NTP time server.

Radio reference time servers receive the time from long wave transmission broadcast by physics laboratories like NIST in North America or NPL in the UK. These transmissions can often be picked up throughout the country of origin (and beyond) although local topography and interference from other electrical devices can interfere with the signal.

GPS time servers, on the other hand, use the satellite navigation signal transmitted from GPS satellites. The GPS transmissions are generated by atomic clocks onboard the satellites so they are a highly accurate source of time just like the atomic clock generated time broadcast by the physics laboratories.

Apart from the disadvantage of having to have a roof top antenna (GPS works by line of sight so a clear view of the sky is essential), GPS is obtainable literally everywhere on the planet.

As both types of time server can provide an accurate source of reliable time the decision of which type of time server should be based on the availability of long wave signals or whether it is possible to install a rooftop GPS antenna.