Category: NTP GPS time

Using GPS as a source of Accurate Time

  |   By

The Global Positioning System (GPS) is an increasingly popular tool, used throughout the world as a source of wayfinding and navigation. However, there is much more to the GPS network than just satellite navigation as the transmissions broadcast by the GPS satellites can also be used as a highly accurate source of time.

GPS satellites are actually just orbiting clocks as each one contains atomic clocks that generate a time signal. It is the time signal that is broadcast by the GPS satellites that satellite navigation receivers in cars and planes use to work out distance and position.

Positioning is only possible because thee time signals are so accurate. Vehicle sat navs for instance use the signals from four orbiting satellites and triangulate the information to work out the position. However, if there is just one second inaccuracy with one of the time signals then the positing information could be thousands of miles out – proving useless.

It is testament to the accuracy of atomic clocks used to generate GPS signals that currently a GPS receiver can work out its position on earth to within five metres.

Because GPS satellites are so accurate, they make an ideal source of time to synchronise a computer network to. Strictly speaking GPS time differs from the international timescale UTC (coordinated Universal Time) as UTC has had additional leap seconds added to it to ensure parity with the earth’s rotation meaning it is exactly 18 seconds ahead of GPS but is easily converted by NTP the time synchronisation protocol (Network Time Protocol).

GPS time servers receive the GPS time signal via a GPS antenna which has to be placed on the roof to receive the line of sight transmissions. Once the GPS signal is received the NTP GPS time server will distribute the signal to all devices on the NTP network and corrects any drift on individual machines.

GPS time servers are dedicated easy to use devices and can ensure millisecond accuracy to UTC without any of the security risks involved in using an internet time source.

MSF Outages for 2010

  |   By

Users of the National Physical Laboratory’s (NPL) MSF time and frequency signal are probably aware that the signal is occasionally taken off-air for scheduled maintenance.

NPL have published there scheduled maintenance for 2010 where the signal will be temporarily taken off-air. Usually the scheduled downtimes lasts for less than four hours but users need to be aware that while NPL and VT Communications, who service the antenna, make every effort to ensure the transmitter is off for a brief amount of time as possible, there can be delays.

And while NPL like to ensure all users of the MSF signal have advanced warning of possible outages, emergency repairs and other issues may lead to unscheduled outages. Any user receiving problems receiving the MSF signal should check the NPL website in case of unscheduled maintenance before contacting your time server vendor.

The dates and times of the scheduled maintenance periods for 2010 are as follows:

* 11 March 2010 from 10:00 UTC to 14:00 UTC

* 10 June 2010 from 10:00 BST to 14:00 BST (UTC + 1 hr)

* 9 September 2010 from 10:00 BST to 14:00 BST (UTC + 1 hr)

* 9 December 2010 from 10:00 UTC to 14:00 UTC

As these scheduled outages should take no longer than four hours, users of MSF referenced time servers should not notice any drop off in accuracy of their network as their shouldn’t be enough time for any device to drift.

However, for those users concerned about accuracy or require a NTP time server (Network Time Server) that doesn’t succumb to regular outages, they may wish to consider investing in a GPS time server.

GPS time servers receive the time from the orbiting navigational satellites. As these are available anywhere on the globe and the signals are never down for outages they can provide a constant accurate time signal (GPS time is not the same as UTC but is easily converted by NTP as it is exactly 17 seconds behind due to leap seconds being added to UTC and not GPS).

Why a GPS Time Server is the Number One Choice for Time Synchronization

  |   By

When it comes to synchronizing a computer network there are several choice to ensure each device is running the same time. NTP (Network Time Protocol) is the preferred choice of time synchronization protocols but there are a multitude of methods in how NTP receives the time.

The NTP Daemon is installed on most operating systems such as windows and applications such as Windows Time are quite capable of receiving a source of UTC time (Coordinated Universal Time) from across the internet.

UTC time is the preferred time source used by computer networks as it is kept true by atomic clocks. UTC, as the name suggests, is also universal and is used by computer networks all over the world as a source to synchronize too.

However, internet sources of UTC are to recommended for any organisation where security and accuracy are a concern. Not only can the distant from host (internet time server) to the client (your computer network) can never be accurately measured leading to a drop in precision. Furthermore, any source of internet time will need access through the firewall (usually through the UDP 123 port). And by leaving this port open, malicious users and hackers can take advantage and gain access to the system.

Dedicated NTP time servers are a better solution as they receive the time from an external source. There are really two types of NTP server, the radio reference time server and the GPS time server.
Radio reference time servers use signals broadcast by places like NPL (National Physical Laboratory in the UK) or NIST (National Institute of Standards and Time). While these signals are extremely accurate, precise and secure they are affected by regular maintenance on the transmitters that broadcast the signal. Also being long wave they are vulnerable to local interference.

GPS time servers on the other hand receive the time directly from GPS satellites. This GPS time is easily converted to UTC by NTP (GPS time is UTC – 17 seconds exactly as no leap seconds have been added.) As the GPS signal is available everywhere on the earth 24 hours a day, 365 days a week, there is never a risk of a loss of signal.
A single dedicated GPS time server can synchronize a computer network of hundreds, and even thousands of machines to within a few of milliseconds of UTC time.