Using NIST Time Servers

  |   By

The National Institute for Standards and Technology (NIST) is one of the world’s leading atomic clock laboratories, and is the leading American time authority. Part of a constellation of national physics laboratories, NIST help ensure the worlds atomic clock time standard UTC (Coordinated Universal Time) is kept accurate and is available for the American people to use as a time standard.

All sorts of technologies rely on UTC time. All the machines on a computer network are usually synchronised to source of UTC, while technologies such as ATM’s, closed-circuit television (CCTV) and alarm systems require a source of NIST time to prevent errors.

Part of what NIST does is to ensure that sources of UTC time are readily available for the technologies to utilise, and NIST offer several means of receiving their time standard.

The Internet

The internet is the easiest method of receiving NIST time and in most Windows based operating systems, the NIST time standard address is already included in the time and date settings, allowing easy synchronisation. If it isn’t, to synchronise to NIST you simply need to double click on the system clock (bottom right hand corner) and enter the NIST server name and address. A full list of NIST Internet servers, here:

The Internet, however, is not a particularly secure location to receive a source of NIST time. Any Internet time source will require and open port in the firewall (UDP port 123) for the time signal to get through. Obviously, any gap in a firewall can lead to security issues, so fortunately NIST provide another method of receiving their time.

NTP Time Servers

NIST, from their transmitter in Colorado, broadcasts a time signal that all of North America can receive. The signal, generated and kept true by NIST atomic clocks, is highly accurate, reliable and secure, received externally to the firewall by using a WWVB timeserver (WWVB is call sign for the NIST time signal).

Once received, the protocol NTP (Network Time Protocol) will use the NIST time code and distribute it around the network and will ensure each device keeps true to it, continually making adjustments to cope with drift.

WWVB NTP time servers are accurate, secure and reliable and a must-have for anybody serious about security and accuracy who wants to receive a source of NIST time.

Most Accurate Atomic Clock Yet

  |   By

A new atomic clock as accurate as any produced has been developed by the University of Tokyo which is so accurate it can measure differences in Earth’s gravitational field—reports the journal Nature Photonics.

While atomic clocks are highly accurate, and are used to define the international timescale UTC (Coordinated Universal Time), which many computer networks rely on to synchronise their NTP servers to, they are finite in their accuracy.

Atomic clock use the oscillations of atoms emitted during the change between two energy states, but currently they are limited by the Dick effect, where noise and interference generated by the lasers used to read the frequency of the clock, gradually affect the time.

The new optical lattice clocks, developed by Professor Hidetoshi Katori and his team at the University of Tokyo, get around this problem by trapping the oscillating atoms in an optical lattice produced by a laser field. This makes the clock extremely stable, and incredibly accurate.

Indeed the clock is so accurate Professor Katori and his team suggest that not only could it man future GPS systems become accurate to within a couple of inches, but can also measure the difference in the gravitation of the Earth.

As discovered by Einstein in his Special and General Theories of Relativity, time is affected by the strength of gravitational fields. The stronger the gravity of a body, the more time and space is bent, slowing down time.

Professor Katori and his team suggest that this means their clocks could be used to find oil deposits below the Earth, as oil is a lower density, and therefore has a weaker gravity than rock.

Despite the Dick Effect, traditional atomic clocks currently used to govern UTC and to synchronise computer networks via NTP time servers, are still highly accurate and will not drift by a second in over 100,000 years, still accurate enough for the majority of precise time requirements.

However, a century ago the most accurate clock available was an electronic quartz clock that would drift by a second a day, but as technology developed more and more accurate time pieces were required, so in the future, it is highly possible that these new generation of atomic clocks will be the norm.

Keeping the World Ticking Over The Global Timekeepers

  |   By

When we want to know the time it is very simple to look at a clock, watch or one of the myriad devices that display the time such as our mobile phones or computers. But when it comes to setting the time, we rely on the internet, speaking clock or somebody else watch; however, how do we know these clocks are right, and who is it that ensures that time is accurate at all?

Traditionally we have based time on Earth in relation to the rotation of the planet—24 hours in a day, and each hour split into minutes and seconds. But, when atomic clocks were developed in the 1950’s it soon became apparent that the Earth was not a reliable chronometer and that the length of a day varies.

In the modern world, with global communications and technologies such as GPS and the internet, accurate time is highly important so ensuring that there is a timescale that is kept truly accurate is important, but who is it that controls global time, and how accurate is it, really?

Global time is known as UTC—coordinated Universal Time. It is based on the time told by atomic clocks but makes allowances for the inaccuracy of the Earth’s spin by having occasional leap seconds added to UTC to ensure we don’t get into a position where time drifts and ends up having no relation to the daylight or night time (so midnight is always at day and noon is in the day).

UTC is governed by a constellation of scientists and atomic clocks all across the globe. This is done for political reasons so no one country has complete control over the global timescale. In the USA, the National Institute for Standards and Time (NIST), helps govern UTC and broadcast a UTC time signal from Fort Collins in Colorado.

While in the UK, the National Physical Laboratory (NPL) does the same thing and transmits their UTC signal from Cumbria, England. Other physics labs across the world have similar signals and it is these laboratories that ensure UTC is always accurate.

For modern technologies and computer networks, these UTC transmissions enable computer systems across the globe to be synchronised together. The software NTP (Network Time Protocol) is used to distribute these time signals to each machine, ensuring perfect synchronicity, while NTP time servers can receive the radio signals broadcast by the physics laboratories.

Importance of Atomic Clock Time Sources for Technology

  |   By

Timekeeping and accuracy is important in the running of our day-to-day lives. We need to know what time events are occurring to ensure we don’t miss them, we also need to have a source of accurate time to prevent us from being late; and computers and other technology are just as reliant on the tine as we are.

For many computers and technical systems, the time in the form of a timestamp is the only tangible thing a machine has to identify when events should occur, and in what order. Without a timestamp a computer is unable to perform any task—even saving data is impossible without the machine knowing what time it is.

Because of this reliance on time, all computer systems have in-built clocks on their circuit boards. Commonly these are quartz based oscillators, similar to the electronic clocks used in digital wrist watches.

The problem with these system clocks is that they are not very accurate. Sure, for telling the time for human purposes they are precise enough; however, machines quite often require a higher level of accuracy, especially when devices are synchronised.

For computer networks, synchronisation is crucial as different machines telling different times could lead to errors and failure of the network to perform even simple tasks. The difficult with network synchronisation is that the system clocks used by computers to keep time can drift. And when different clocks drift by differing amounts, a network can soon fall into disarray as different machines keep different times.

For this reason, these system clocks are not relied on to provide synchronisation. Instead, a far more accurate type of clock is used: the atomic clock.

Atomic clocks don’t drift (at least not by more than a second in a million years) and so are ideal to synchronise computer networks too. Most computers use the software protocol NTP (Network Time Protocol) which uses a single atomic clock time source, either from across the internet, or more securely, externally via GPS or radio signals, in which it synchronises every machine on a network to.

Because NTP ensures each device is kept accurate to this source time and ignores the unreliable system clocks, the entire network can be kept synchronised to with each machine within fractions of a second of each other.

Keeping a Windows 7 Network Secure, Reliable and Accurate

  |   By

Many modern computer networks are now running Microsoft’s latest operating system Window 7, which has many new and improved features including the ability to synchronise time.

When a Windows 7 machine is booted up, unlike previous incarnations of Windows, the operating system automatically attempts to synchronise to a time server across the internet to ensure the network is running accurate time. However, while this facility is often useful for residential users, for business networks it can cause many problems.

Firstly, to allow this synchronisation process to happen, the company firewall must have an open port (UDP 123) to allow the regular time transference. This can cause security issues as malicious users and bots can take advantage of the open port to penetrate into the company network.

Secondly, while the internet time servers are often quite accurate, this can often depend on your distance from the host, and any latency caused by network or internet connection can further cause inaccuracies meaning that you system can often be more than several seconds away from the preferred UTC time (Coordinated Universal Time).

Finally, as internet time sources are stratum 2 devices, that is they are servers that do not receive a first-hand time code, but instead receive a second hand source of time from a stratum 1 device (dedicated NTP time server – Network Time Protocol) which also can lead to inaccuracy – these stratum 2 connections can also be very busy preventing your network from accessing the time for prolonged periods risking drifting.

To ensure accurate, reliable and secure time for a Windows 7 network, there is really no substitute than to use your own stratum 1 NTP time server. These are readily available from many sources and are not very expensive but the peace of mind they provide is invaluable.

Stratum 1 NTP time servers receive a secure time signal direct from an atomic clock source. The time signal is external to the network so there is no danger of it being hijacked or any need to have open ports in the firewall.

Furthermore, as the time signals come from a direct atomic clock source they are very accurate and don’t suffer any latency problems. The signals used can be either through GPS (Global Positioning System satellites’ have onboard atomic clocks) or from radio transmissions broadcast by national physics laboratories such as NIST in the USA (broadcast from Colorado), NPL in the UK (transmitted form Cumbria) or their German equivalent (from Frankfurt).

Press Release: Galleon Systems Launch New Website

  |   By

Atomic clock and NTP server specialists, Galleon Systems, have relaunched their website providing an improved platform to showcase their wide range of time synchronisation and network time server products.

Galleon Systems, who have been providing atomic clock and time server products to industry and commerce for over a decade, have redesigned their website to ensure the company continues to be world leaders in providing accurate, secure and reliable time synchronisation products.

With detailed descriptions of their product range, new product pictures and a revamped menu system to provided better functionality and user experience, the new website includes all of Galleons extensive range of NTP server systems (Network Time Protocol) and atomic clock synchronisation products.

Time servers from Galleon Systems are accurate to within a fraction of a second and are a secure and reliable method of getting a source of atomic clock time for computer networks and technological applications.

Using either GPS or the UKs MSF radio signal (DSF in Europe WWVB in the USA), time servers from Galleon Systems can keep hundreds of devices on a network accurate to within a few milliseconds of the international timescale UTC (Coordinated Universal Time).

Galleon Systems product range includes a variety of NTP time servers that can receive either GPS or radio referenced signals, dual systems that can receive both, simple radio controlled atomic clock servers, and a range of large network digital and analogue wall clocks.

Manufactured in the UK, Galleon Systems have a wide range of NTP and time synchronisation devices used worldwide by thousands of organizations who need accurate, reliable and precise time. For more information please visit their new website: www.galsys.co.uk

Mechanisms of Time History of Chronological Devices

  |   By

Nearly every device seems to have a clock attached to it these days. Computers, mobile phones and all the other gadgets we use are all good sources of time. Ensuring that no matter where you are a clock is never that far away – but it wasn’t always this way.

Clock making, in Europe, started around the fourteenth century when the first simple mechanical clocks were developed. These early devices were not very accurate, losing perhaps up to half an hour a day, but with the development of pendulums these devices became increasingly more accurate.

However, the first mechanic al clocks were not the first mechanical devices that could tell and predict time. Indeed, it seems Europeans were over fifteen hundred years late with their development of gears, cogs and mechanical clocks, as the ancients had long ago got there first.

Early in the twentieth century a brass machine was discovered in a shipwreck (Antikythera wreck) off Greece, which was a device as complex as any clock made in Europe up in the mediaeval period. While the Antikythera mechanism is not strictly a clock – it was designed to predict the orbit of planets and seasons, solar eclipses and even the ancient Olympic Games – but is just as precise and complicated as Swiss clocks manufactured in Europe in the nineteenth century.

While Europeans had to relearn the manufacture of such precise machines, clock making has moved on dramatically since then. In the last hundred or so years we have seen the emergence of electronic clocks, using crystals such as quartz to keep time, to the emergence of atomic clocks that use the resonance of atoms.

Atomic clocks are so accurate they won’t drift by even a second in a hundred thousand years which is phenomenal when you consider that even quartz digital clocks will drift several seconds n a day.

While few people will have ever seen an atomic clock as they are bulky and complicated devices that require teams of people to keep them operational, they still govern our lives.

Much of the technologies we are familiar with such as the internet and mobile phone networks, are all governed by atomic clocks. NTP time servers (Network Time Protocol) are used to receive atomic clock signals often broadcast by large physics laboratories or from the GPS (Global Positioning System) satellite signals.

NTP servers then distribute the time around a computer network adjusting the system clocks on individual machines to ensure they are accurate. Typically, a network of hundreds and even thousands of machines can be kept synchronised together to an atomic clock time source using a single NTP time server, and keep them accurate to within a few milliseconds of each other (few thousandths of a second).

UTC One Time to Rule Them All

  |   By

In a global economy time has become a more crucial than ever before. As people across the globe, communicate, conference and buy and sell from each other, being aware of the each other’s time is vital for conducting business successfully.

And with the internet, global communication and time awareness are even more important as computers require a source of time for nearly all their applications and processes. The difficulty with computer communication, however, is that if different machines are running different times, all sorts of errors can occur. Data can get lost, errors fail to log; the system can become unsecure, unstable and unreliable.

Time synchronisation for computer networks communicating with each other is, therefore, essential – but how is it achieved when different networks are in different time-zones?

The answer lies with Universal Coordinated Time (UTC) an international time-zones developed in the 1970’2 that is based on accurate atomic clocks.  UTC is set the same the world over, with no accounting for time-zones so the time on a network in the UK – will be identical to the network time in the USA.

UTC time on a computer network is also kept synchronised through the use of NTP (Network Time Protocol) and an NTP server.  NTP ensures all devices on a networked system have exactly the right time as different computer clocks will drift at varying rates – even if the machines are identical.

While UTC makes no accounting for time-zones system clocks can still be set to the local time-zone but the applications and functions of a computer will use UTC.

UTC time is delivered to computer networks through a variety of sources: radio signals, the GPS signal, or across the internet (although the accuracy of internet time is debatable). Most computer networks have a NTP time server somewhere in their server room which will receive the time signal and distribute it through the network ensuring all machines are within a few milliseconds of UTC and that the time on your network corresponds to every other UTC network on the globe.

Computer Time Synchronisation The Basics

  |   By

With so much automated in the modern world and with computer networks running everything from finance to health services, keeping, storing and transferring information needs to be secure, accurate and reliable.

The time is crucial for computer systems to ensure this. Timestamps are the only information computers have to assess if a task has been completed, is due, or that information has been successfully received, sent or stored. One of the most common causes of computer errors comes from inadequate synchronisation of timings.

All computer networks need to be synchronised, and not just all the devices on a network, either. With so much global communication these days, all computer networks across the globe need to be synchronised together, otherwise when they communicate errors may occur, data can get lost, and it can pave the way for security problems as time discrepancies can be used by malicious users and software.

But how do computers synchronise together? Well, it is made possible by to innovations. The first is the international timescale, UTC (Coordinated Universal Time), kept true by atomic clocks and the same the world over, regardless of time-zones. The second, NTP (Network Time Protocol) is a computer program designed to keep PCs synchronised together.

Both NTP and UTC operate in tandem. The computer time server (NTP server) receives a UTC time source, either from radio, GPS (Global Positioning System) or the internet (although an insecure method of receiving UTC and not recommended).

NTP then distributes this time around a network, checking the time on each device at periodic intervals and adjusts them for any drift in time. Most computer networks that utilise NTP time servers in this way have each machine on the network within milliseconds of UTC time, enabling accurate and precise global communication.

NTP time servers are the only secure and accurate method of computer network synchronisation and should be used by any computer system that requires reliability, accuracy and security.

Origin of Synchronisation (Part 1)

  |   By

Part One

With modern NTP servers (Network Time Protocol) synchronisation is made easy. By receiving a signals from GPS or radio signals such as MSF or WWVB, computer networks consisting of hundreds of machines can easily be synchronised together, ensuring trouble free networking and accurate time-stamping.

Modern NTP time servers are reliant on atomic clocks, accurate to billions of parts of a second, but atomic clocks have only been around for the last sixty years and synchronisation has not always been so easy.

In the early days of chronology, clocks mechanical in nature, were not very accurate at all. The first time-pieces could drift by up to an hour a day so the time could differ from town clock to town clock, and most people in the agricultural based society regarded them as a novelty, relying in stead on sunrise and sunset to plan their days.

However, following the industrial revolution, commerce became more important to society and civilisation, and with it, the need to know what the time was; people needed to know when to go to work, when to leave and with the advent of railways, accurate time became even more crucial.

In the early days if industry, workers were often woken for work by people paid to wake them up. Known as ‛knocker-uppers.’ Relying on the factory time-peice, they would go around town and tap on people’s windows, alerting them to the start of the day, and the factory hooters signalled the beginning and end of shifts.

However, as commerce developed time became even more crucial, but as it would take another century or so for more accurate timepieces to develop (until at least the invention of electronic clocks), other methods were developed.

To follow…