Finding an Online NTP Time Source

  |   By

Finding a source of time to synchronise a computer network to can be a challenge as there are a myriad of online time sources, all pertaining to be accurate and reliable; however, the truth can be rather different with many online sources either in too much demand, too far away or inaccurate.

NTP (Network Time Protocol) requires a source of UTC time (Coordinated Universal Time) which is kept true by atomic clocks. Online time sources are not themselves atomic clocks but NTP server devices that receive the time from an atomic clock which is then relayed to the devices that connect to the online time server.

There are two types of online time server: stratum 1 devices – devices that receive the time directly from an atomic clock, either using GPS or a radio reference signal. Stratum 2 devices  on the other hand are one step further away in that they are receive their time from a stratum 1 time server.

Because of demand, finding an online stratum 1 time server is next to impossible, and those that do take request usually do so under a subscription, which leaves the only choice for most people being a stratum 2 device.

There are plenty of resources on the internet that provide locations for online time servers such as https://support.microsoft.com/en-us/help/262680/a-list-of-the-simple-network-time-protocol-sntp-time-servers-that-are

But there are drawbacks to using such devices; firstly, online stratum 2 time sources can’t be guaranteed and several surveys taken have found that the reliability and accuracy of many of them can’t be taken for granted.  Secondly, online sources of time require an open firewall port which can be manipulated by malicious bots or users – leading to security risks.

A far better solution for most networks is to install your own stratum 1 NTP server. These time server devices sync to atomic clocks outside the firewall (using GPS or radio signals) and therefore are not security risks. They are also accurate to a few milliseconds ensuring the network will always be accurate to UTC.

Do I Really Need an NTP Time Server?

  |   By

NTP (Network Time Protocol) is one of the oldest protocols still in use today. It was developed in the 1980’s when the internet was still in its infancy and was designed to help computers synchronise together, preventing drift and ensuring devices can communicate with unreliable time causing errors.

NTP is now packaged in most operating systems and forms the basis for time synchronisation in computers, networks and other technologies. Most technologies and networks use a network time server (commonly called an NTP time server) for this task.

These time servers are external devices that receive the time from a radio frequency or GPS signal (both generated by atomic clocks). This time signal is then distributed across the network using NTP ensuring all devices are using the exact same time.

As NTP is ubiquitous in most operating systems and the internet is awash with sources of atomic clock time, this begs the question of whether NTP time servers are still necessary for modern computer networks and technology.

There are two reasons why networks should always use a NTP time server and not rely on the internet as a source of time for synchronisation. Firstly, internet time can never be guaranteed. Even if the source of time is 100% accurate and kept true (incidentally most sources of internet time are derived using an NTP time server at the host’s end) the distance from the host can lead to discrepancies.

Secondly, and perhaps fundamentally more important to most business networks is security. NTP time servers work externally to the network. The source of time either radio of GPS, is secure, accurate and reliable and as it is external to the network it can’t be tampered with en-route, or used to disguise malicious software and bots.

NTP servers don’t require an open port in the firewall, unlike internet sources of time which can be used as an entry point by malicious users and software.

From Pennies to NTP Servers the Intricacies of Keeping Time

  |   By

Keeping accurate time is an essential aspect of our day to day lives. Nearly everything we do is reliant on time from getting up for work in the morning to arranging meetings, nights out or just when it’s time for dinner.

Most of us carry some kind of clock or watch with us but these timepieces are prone to drift which is why most people regularly use another clock of device to set their time too.

In London, by far the most common timepiece that people use to set their watches too is Big Ben. This world famous clock can be seen for miles, which is why so many Londoners use it to ensure their watches and clocks are accurate – but have you ever wondered how Big Ben keeps itself accurate?

Well the unlikely truth lies in a pile of old coins. Big Ben’s clock mechanism uses a pendulum but for fine tuning and ensuring accuracy a small pile of gold coins resting on the top of the pendulum.  If just one coin is removed then the clock’s speed will change by nearly half a second

Ensuring accuracy on a computer network is far less archaic. All computer networks need to run accurate and synchronised time as computers too are completely reliant on knowing the time.

Fortunately, NTP time servers are designed to accurately and reliably keep entire computer networks synchronised. NTP (Network Time Protocol) is a software protocol designed to keep networks accurate and it works by using a single time source that it uses to correct drift on

Most network operators synchronise their computers to a form of UTC time (Coordinated Universal Time) as this is governed by atomic clocks (highly accurate timepieces that never drift – not for several thousand years, anyway).

A source of atomic clock time can be received by a NTP server by using either GPS satellite (Global Positioning System) signals or radio frequencies broadcast by national physics laboratories.

NTP servers ensure that computer networks all across the globe are synchronised, accurate and reliable.

Using Atomic Clock Time Signals

  |   By

Accuracy is becoming more and more relevant as technology becomes increasingly important to the functioning of our everyday lives. And as our economies become more reliant on the global marketplace, accuracy and synchronisation of time is very important.

Computers seem to control much our daily lives and time is essential for the modern computer network infrastructure. Timestamps ensure actions are carried out by computers and are the only point of reference IT systems have for error checking, debugging and logging. A problem with the time on a computer network and it could lead to data getting lost, transactions failing and security issues.

Synchronisation on a network and synchronisation with another network that you communicate with are essential to prevent the above mentioned errors. But when it comes to communicating with networks across the globe things can be even trickier as the time on the other-side of the world is obviously different as you pass each time-zone.

To counter this, a global timescale based on atomic clock time was devised. UTC – Coordinated Universal Time – does away with time-zones enabling all networks across the globe to use the same time source – ensuring that computers, no matter where they are in the world, are synchronised together.

To synchronise a computer network, UTC is distributed using the time synchronisation software NTP (Network Time Protocol). The only complication is receiving a source of UTC time as it is generated by atomic clocks which are multi-million dollar systems that are not available for mass use.

Fortunately, signals from atomic clocks can be received using a NTP time server. These devices can receive radio transmissions that are broadcast from physic laboratories which can be used as a source of time to synchronise an entire network of computers to.

Other NTP time servers use the signals beamed from GPS satellites as a source of time. The positioning information in these signals is actually a time signal generated by atomic clocks onboard the satellites (which is then triangulated by the GPS receivers).

Whether it’s a radio referenced NTP server or a GPS time server – an entire network of hundreds, and even thousands of machines can be synchronised together.

The Effects of No Time Signal

  |   By

NTP servers (Network Time Protocol) are an essential tool in the modern computer network. They control the time, ensuring every device on the network is synchronised.

Because of the importance of time in controlling nearly every aspect of computer networking accurate and synchronised time is essential which is why so many system administrators deploy a NTP time server.

These time servers use a single time source as a base to set all the clocks on a network to; the time is often got from the GPS network or radio signals broadcast from physics laboratories such as NPL in the UK (whose signal is broadcast from Cumbria).

Once this signal is received by the time server, the time protocol NTP then distributes it around the network – comparing the system clock of every device to the time reference and adjusting each device. By regularly assessing the drift of these devices and correcting for them NTP keeps clocks accurate to within milliseconds of the time signal and when this signal emanates from an atomic clock – it ensures the network is as accurate as physically possible, but what happens if you lose the time signal?

Damaged GPS antennas, maintenance of time signal transmitters or technical faults can lead to a NTP time sever failing to receive a time signal. Often, this is only temporary and normal service is resumed within a few hours but what happens if it doesn’t, and what is the effect of having a failed time signal?

Fortunately, NTP has back-up systems for just such an eventuality. If a time signal fails and there is no other source of time, NTP cleverly uses the average time from all the clocks on its network. So if some clocks have drifted a few milliseconds faster, and others a few milliseconds slower – then NTP takes the average of this drift ensuring that the time remains accurate for as long as possible.

Even if a signal has failed for several days – or even weeks – without knowledge of the system users, this does not mean the network will drift apart. NTP will still keep the entire network synchronised together, using the average drift, and while the longer the time signal remains off the les accurate the network will be it can still provide millisecond accuracy even after a few days of no time reference.

Time Synchronisation Getting it Right

  |   By

Time is essential for computers, networks and technology. It is the only reference technology has to ascertain if a task has happened or is due to take place. As time, in the from of timestamps, is so important for technology, when there is uncertainty over time, due to different devices on a network having different times, it can cause untold errors.

The problem with time in computing is that all devices, from routers to desktop PCs, have their own onboard timepiece that governs the system clocks. These system clocks are just normal electronic oscillators, they type commonly found in battery powered watches, and while these are adequate for humans to tell the time, the drifting of these clocks can see devices on a network, seconds and even minutes out of sync.

There are two rules for time synchronisation:

  • All devices on a network should be synchronised together
  • The network should be synchronised to UTC (Coordinated Universal Time)

 

NTP

To synchronise a network you need to make use of Network Time Protocol (NTP). NTP is designed for accurate network time synchronisation.  IT works by using a single source of time which it then distributes it to all devices on the NTP network.

NTP continually checks the devices for any drift and then adjusts to ensure the entire network is within a few milliseconds of the reference time.

UTC

Coordinated Universal Time is a global timescale that is kept true by atomic clocks. By synchronising a network to UTC you are in effect ensuring your network is synchronised to every other UTC network on the planet.

Using UTC as a reference source is a simple affair too. NTP time servers are the best way to find a secure source of UTC time. They use either GPS (Global Positioning System) as a source of this atomic clock time or specialist radio signals keeping the UTC time source external to the network for security reasons.

A single NTP server can synchronise a network of hundreds and even thousands of devices ensuring the entire network is to within a few milliseconds of UTC.

The Time According to UTC (Coordinated Universal Time)

  |   By

The modern world is a small one. These days, in business you are just as likely to be communicating across the Atlantic as you are trading with you neighbour but this can cause difficulties – as anybody trying to get hold of somebody across the other-side of the world will know.

The problem, of course, is time. There are 24 time zones on Earth which means that people you may wish to talk to across the other side of the world, are in bed when you are awake – and vice versa.

Communication is not jus a problem for us humans either; much of our communication is conducted through computers and other technologies that can cause even more problems. Not just because time-zones are different but clocks, whether they are those that power a computer, or an office wall clock, can drift.

Time synchronisation is therefore important to ensure that the device you are communicating with has the same time otherwise whatever transaction you are conducting may result in errors such as the application failing, data getting lost or the machines believing an action has taken place  when it has not.

Coordinated Universal Time

Coordinated Universal Time (UTC) is an international timescale. It pays no heed to time-zones and is kept true by a constellation of atomic clocks – accurate timepieces that do not suffer from drift.

UTC also compensates for the slowing of the Earth’s spin by adding leap seconds to ensure there is no drift that would eventually cause noon to drift towards night (albeit in many millennia; so slow is the slowing of the Earth).

Most technologies and computer networks across the globe use UTC as their source of time, making global communication more feasible.

Network Time Protocol and NTP Time Servers

Receiving UTC time for a computer network is the job of the NTP time server. These devices use Network Time Protocol to distribute the time to all technologies on the NTP network. NTP time servers receive the source of time from a number of different sources.

  • The internet – although  internet time sources can be insecure and unreliable
  • The GPS (Global Positioning System) – using the onboard atomic clocks from navigation satellites.
  • Radio signals – broadcast by national physics laboratories like NPL and NIST.

Using Atomic Clocks for Time Synchronisation

  |   By

The atomic clock is unrivalled in its chronological accuracy. No other method of maintaining time comes close to the precision of an atomic clock. These ultra-precise devices can keep time for thousands of years without losing a second in drift – in comparison to electronic clocks, perhaps the next most accurate devices, which can drift up to a second a day.

Atomic clocks are not practical devices to have around though. They use advanced technologies such as super-coolant liquids, lasers and vacuums – they also require a team of skilled technicians to keep the clocks running.

Atomic clocks are deployed in some technologies. The Global Positioning System (GPS) relies on atomic clocks that operate onboard the unmanned orbiting satellites. These are crucial for working out accurate distances. Because of the speed of light that the signals travel, a one second inaccuracy in any GPS atomic clock would lead to positing information being out by thousands of kilometres – but the actual accuracy of GPS is within a few metres.

While these wholly accurate and precise instruments for measuring time are unparalleled and the expensive of running such devices is unobtainable to most people, synchronising your technology to an atomic clock, in actual fact, is relatively simple.

The atomic clocks onboard the GPS satellites are easily utilised to synchronise many technologies to. The signals that are used to provide positioning information can also be used as a source of atomic clock time.

The simplest way to receive these signals is to use a GPS NTP server (Network Time Protocol). These NTP servers use the atomic clock time signal from the GPS satellites as a reference time, the protocol NTP is then used to distribute this time around a network, checking each device with the GPS time and adjusting to ensure accuracy.

Entire computer networks can be synchronised to the GPS atomic clock time by using just one NTP GPS server, ensuring that all devices are within milliseconds of the same time.

The Hierarchy of a NTP Time Server Stratum Levels Explained

  |   By

When it comes to time synchronisation and using Network Time Protocol (NTP) to ensure accuracy on a computer network, it is important to understand the hierarchy of NTP and how it affects distance and accuracy.

NTP has a hierarchical structure known as stratum levels. In principle the lower the stratum number the closer the device is (in accuracy terms) to an original time source.

NTP time servers work by receiving a single time source and using this as a basis for all time on the network, however, a synchronised network will be only as accurate as the original time source and this is where stratum levels come in.

And atomic clock, either one sat in a large scale physics laboratory, or those aboard GPS satellites, are stratum 0 devices. In other words these are the devices that actually generate the time.

Stratum 1 devices are NTP time servers that get their source of time directly from these stratum 0 atomic clocks. Either by using a GPS receiver or a radio referenced NTP server, a stratum 1 device is as accurate as you can get without having your own multi-million dollar atomic clock in the server room. A stratum 1 NTP time server will typically be accurate to within a millisecond of the atomic clock time.

Stratum 2 devices are the next step down on stratum level chain. These are time servers that receive their time from a stratum 1 device. Most online time servers, for instance, are stratum 2 devices, getting their time from another NTP time server. Stratum 2 devices are obviously further away from the original time source and therefore are not quite as accurate.

The stratum levels on an NTP network continue on, with devices connecting to devices going all the way down to stratum 10, 11, 12 and so on – obviously the more links in the chain the less accurate the device will be.

Dedicated stratum 1 NTP time servers are by far the most accurate, reliable and secure method of synchronising a computer network and no business network should really be without one.

NTP and GPS-based Timing Solutions

  |   By

Ask anybody what the key to network timing is and you will probably get the response NTP (Network Time Protocol).  NTP is a protocol that distributes and checks the time on all network devices to a reference clock – and it is this reference which is the true key to network time synchronisation.

Whilst a version of NTP is easy to obtain – it is normally installed on most operating systems, or is otherwise free to download – but getting a source of time is where the true key to network time synchronisation lies.

Atomic clocks govern the global timescale UTC (Coordinated Universal Time) and it is this timescale that is best for network timing as synchronising all devices on a network to UTC is equivalent of having you network synchronised with every other UTC synced network on Earth.

So getting a source of UTC time is the true key to accurate network time synchronisation, so what are the options?

Internet Time Sources

The obvious choice for most NTP users, but internet time suffers from two major flaws; firstly, internet time operates through the firewall and is therefore fraught with security risks – if the time can get through your firewall, then other things can too. Secondly, internet time sources can be hit and miss with their accuracy.

Due to the fact most internet time sources are stratum 2 devices (they connect to another device that receives the UTC source time) and the distance from client to host can never be truly ascertained or accounted for – it can make them inaccurate – with some internet time sources minutes, hours and even days away from true UTC time.

Radio Referenced Time Server

Another source of UTC time which doesn’t suffer from either security or accuracy flaws is receiving the time from long wave radio signals that some country’s national physics laboratories broadcast. While these signals are available throughout the USA (courtesy of NIST) the UK (NPL) and several other European countries and can be picked up witha basic radio referenced NTP server they are not available everywhere and the signals can be difficult to receive in some urban locations or anywhere where there is electrical interference.

GPS-timing

For completely accurate, secure and a reliable source of UTC time there is no substitute for GPS time. GPS timing signals are beamed directly from atomic clocks onboard the GPS satellites (Global Positioning System) and received by GPS NTP time servers. These can then distribute the atomic clock time around the network.

GPS timing sources are accurate, secure and available literally anywhere on the planet 24 hours a day.