Benefits of Accurate Network Time Synchronization

  |   By

Your computer probably does hundreds and thousands of tasks a day. If that is part of a network then the number of tasks could be millions. From sending emails to saving data, and everything else your computer is tasked to do, they are all logged by the computer or server.

Computers use timestamps to logo processes and indeed, timestamps are used as the only method a computer has to indicate when and if a task or application has been conducted. Timestamps are normally a 16 or 32 bit integer (one long number) that counts back the seconds from a prime epoch – normally 01 January 1970.

So for every task you computer does it will be stamped with the number of seconds from 1970 that the transaction was conducted. These timestamps are the only piece of information a computer system has to ascertain what tasks have been completed and what tasks have yet to be instigated.

The problem with computer networks of more than one machine is that the clocks on individual devices are not accurate enough for many modern time sensitive applications. Computer clocks are prone to drift they are typically based on inexpensive crystal oscillator circuits and can often drift by over a second a day.

This may not seem much but in today’s time sensitive world a second can be a long time indeed especially when you take into account the needs of industries like the stock exchange where a second can be the difference in price of several percent or online seat reservation, where a second can make the difference between an available seat and one that is sold.

This drift is also accumulative so within only a few months the computer systems could be over a minute out of sync and this can have dramatic effects on time sensitive transactions and can result in all sorts of unexpected problems from emails not arriving as a computer thinks they have arrived before they have been sent to data not being backed up or lost completely.

A NTP time server or network time server are increasingly becoming crucial pieces of equipment for the modern computer network. They receive an accurate source of time from an atomic clock and distribute it to all devices on the network. As atomic clocks are incredibly accurate (they won’t drift by a second even in a 100,000 years) and the protocol NTP (Network Time Protocol) continually checks the devices time against the master atomic clock time – it means the computer network will be able to run perfectly synchronised with each device within a few milliseconds of the atomic clock.

Closed Circuit Cameras are Useless Without a Network Time Server

  |   By

For those of us that live in Britain, the CCTV camera (closed circuit TV) will be a familiar site on the high streets. Over four million cameras are in operation throughout the British Isles with every major city being monitored by state funded cameras which has cost the British taxpayer over £200 million ($400 million).

The reasons for use of such widespread surveillance have always been declared as to prevent and detect crime. However, critics argue that there is little evidence that CCTV cameras have done anything to dent the rising street crime on the UK’s streets and that the money could be better well spent.

One of the problems of CCTV is that many cities have both cameras controlled by local councils and privately controlled cameras. When it comes to crime detection the police often have to obtain as much evidence as possible which often means combining the different local authority controlled CCTV cameras with the privately controlled systems.

Many local authorities synchronise their CCTV cameras together, however, if the police have to obtain images from a neighbouring borough or from a private camera these may not be synchronised at all, of if so, synchronised to a different time completely.

This is where CCTV falls down in the fight against crime. Just imagine a suspected criminal is spotted on one CCTV camera committing a criminal act. The time on the camera could say 11.05pm but what if the police follow the suspects movements across a city and use footage from a privately owned camera or from other boroughs and while the CCTV camera that caught the suspect in the act may say 11.05, the other camera could spot the suspect minutes later only for the time to be even earlier. You could imagine a good defence lawyer taking full advantage of this.

To ensure their worth in the fight against crime, it is imperative that CCTV cameras are time synchronized using a network time server. These times servers ensure every device (in this case camera) is running the exact same time. But how do we ensure all cameras are synchronised to the same time source. Well fortunately, a global time source known as UTC (coordinated Universal Time) has been developed for this exact purpose. UTC is what governs computer networks, air traffic control and other time sensitive technologies.

A CCTV camera using a NTP server that receives a UTC time source from an atomic clock will not only be accurate but the time told on the devices will be provable in court and accurate to a thousandth of a second (millisecond).

2038 The Next Computer Time Bug

  |   By

Remember the turn of the millennium. Whilst many of us were counting down the seconds until midnight, there were network administrators across the globe with their fingers crossed hoping their computer systems will still be working after the new millennium kicked in.

The millennium bug was the result of early computer pioneers designing systems with only two digits to represent the time as computer memory was very scarce at the time. The problem didn’t arise because of the turn of the millennium, it arose because it was the end of the century and two digit year flicked around to 00 (which the machines assume was 1900)

Fortunately by the turn of the millennium most computers were updated and enough precautions were taken that meant that the Y2K bug, as it became known, didn’t cause the widespread havoc it was first feared.

However, the Y2K bug is not the only time related problem that computer systems can be expected to face, another problem with the way computers tell the time has been realised and many more machines will be affected in 2038.

The Unix Millennium Bug (or Y2K38) is similar to the original bug in that it is a problem connected with the way computers tell the time. The 2038 problem will occur because most machines use a 32 bit integer to calculate the time. This 32 bit number is set from the number of seconds from 1 January 1970, but because the number is limited to 32 digits by 2038 there will be no more digits left to deal with the advance of time.

To solve this problem, many systems and languages have switched to a 64-bit version, or supplied alternatives which are 64-bit and as the problem will not occur for nearly three decades there is plenty of time to ensure all computer systems can be protected.

However, these problems with timestamps are not the only time related errors that can occur on a computer network. One of the most common causes of computer network errors is lack of time synchronization. Failing to ensure each machine is running at an identical time using a NTP time server can result in data being lost, the network being vulnerable to attack from malicious users and can cause all sorts of errors such as emails arriving before they have been sent.

To ensure your computer network is adequately synchronized an external NTP time server is recommended.

Keeping Your Network Secure A Beginners Guide

  |   By

Network security is vitally important for most business systems. Whilst email viruses and denial-of-service attacks (DoS attack) may cause us headaches on our home systems, for businesses, these sorts of attacks can cripple a network for days – costing businesses hundreds of millions each year in lost revenue.

Keeping a network secure to prevent this type of malicious attack is usually of paramount importance for network administrators, and while most invest heavily in some forms of security measures there is often vulnerabilities inadvertently left exposed.

Firewalls are the best place to begin when you are trying to develop a secure network. A firewall can be implemented in either hardware or software, or most commonly a combination of both. Firewalls are used to prevent unauthorized users from accessing private networks connected to the Internet, especially local intranets. All traffic entering or leaving the intranet pass through the firewall, which examines each message and blocks those that do not meet the specified criteria.

Anti-virus software works in two ways. Firstly it acts similarly to a firewall by blocking anything that is identified in its database as possibly malicious (viruses, Trojans, spyware etc). Secondly Anti-virus software is used to detect, and remove existing malware on a network or workstation.

One of the most over-looked aspects of network security is time synchronization. Network administrators either fail to realise the importance of synchronization between all devices on a network. Failing to synchronize a network is often a common security issue. Not only can malicious users take advantage of computers running at different times but if a network is struck by an attack, identifying and rectifying the problem can be near impossible if every device is running on a different time.

Even when a network administrator is aware of the importance of time synchronization they often make a common security mistake when attempting to synchronize their network. Instead of investing in a dedicated time server that receives a secure source of UTC (Coordinated Universal Time) externally from their network using atomic clock sources like GPS, some network administrators opt to use a shortcut and use a source of Internet time.

There are two major security issues in using the Internet as a time server. Firstly, to allow the time code through the network a UDP port (123) has to be left open in the firewall. This can be taken advantage of by malicious users who can use this open port as an entrance to the network. Secondly, the inbuilt security measure used by the time protocol NTP, known as authentication, doesn’t work across the Internet which means that NTP has no guarantee the time signal is coming from where it is supposed to.

To ensure your network is secure isn’t it time you invested in an external dedicated NTP time server?

Reasons for Atomic Clock Timing

  |   By

Atomic clocks have, unbeknown to most people, revolutionised our technology. Many of the ways we trade, communicate and travel are now solely dependent on timing from atomic clock sources.

A global community often means that we have to communicate with people on other areas of the world and in other time zones. For this purpose a universal time zone was developed, known as UTC (Coordinated Universal Time), which is based on the time told by atomic clocks.

Atomic clocks are incredibly accurate, losing only a second in every hundred million years, which is staggering when you compare it to digital clocks that will lose that much time in a week.

But why do we need such accuracy in timekeeping? Much of the technology we employ in modern times is designed for global communication. The Internet is a good example. So much trade is done across continents in fields such as the stock exchange, seat reservation and online auctioning that exact time is crucial. Imagine you are bidding for an item on the Internet and you place a bid a few seconds before the end, the last and highest bid, would it be fair to lose the item because the clock on your ISP was a little fast and the computer therefore thought the bidding was over. Or what about seat reservation; if two people on different sides of the globe book a seat at the same time, who gets the seat. This is why UTC is vital for the internet.

Other technologies too such as global positioning and air traffic control are reliant on atomic clocks to provide accuracy (and in the case of air traffic is paramount for safety). Even traffic lights and speed cameras have to be calibrated with atomic clocks otherwise speeding ticket may not be valid as they could be questioned in court.

For computer systems NTP time servers are the preferred method for receiving and distributing a source of UTC time.

Using Atomic Clocks to Synchronize a Network

  |   By

Most computer networks have to be synchronized to some degree. Allowing the clocks on computers across a network to all be telling different times is really asking for trouble. All sorts of errors can occur such as emails not arriving, data getting lost, and errors get unnoticed as the machines struggle to makes sense of the paradoxes that unsynchronized time can cause.

The problem is computers use time in the form of timestamps as the only point of reference between different events. If these don’t match then computers struggle to establish not only the order of events but also if the events took place at all.

Synchronizing a computer network
together is extremely simple, thanks largely to the protocol NTP (Network Time Protocol). NTP is installed on most computer operating systems including Windows and most versions of Linux.

NTP uses a single time source and ensures that every device on the network is synchronized to that time. For many networks this single time source can be anything from the IT manager’s wrist watch to the clock on one of the desktop machines.

However, for networks that have to communicate with other networks, have to deal with time sensitive transactions or where high levels of security are required then synchronization to a UTC source is a must.

Coordinated Universal Time (UTC) is a global timescale used by industry all over the world. It is governed by a constellation of atomic clocks making it highly accurate (modern atomic clocks can keep time for 100 million years without losing a second).

For secure synchronization to UTC there is really only one method and that is to use a dedicated NTP time server. Online NTP servers are used by some network administrators but they are taking a risk not only with the accuracy of the synchronization but also with security as malicious users can imitate the NTP time signal and penetrate the firewall.

As dedicated NTP servers are external to the firewall, relying instead on the GPS satellite signal or specialist radio transmissions they are far more secure.

Differences in Time

  |   By

We are all aware of the differences in time zones. Anybody that has travelled across the Atlantic or Pacific will feel the effects of jet lag caused by having to adjust our own internal body clocks. In some countries, such as the USA, several different time zones exist in the one country meaning there are several hours difference in time from the East Coast to the West.

This difference in time zones can cause confusion although for residents of countries that straddle more than one time zone they soon adapt to the situation. However, there are more timescales and differences in time than just time zones.

Different time standards have been developed for decades to cope with time zone differences and to allow for a single time standard that the whole world can synchronize too. Unfortunately since the first time standards were developed such as British Railway Time and Greenwich Mean Time, other standards have had to be developed to cope with different applications.

One of the problem of developing a time standard is choosing what to base it on. Traditionally, all systems of time have been developed on the rotation of the Earth (24 hours). However, following the development of atomic clocks, it was soon discovered that no two days are exactly the same length and quite often they can fall short of the expected 24 hours.

New time standards where then developed based on Atomic clocks as they proved to be far more reliable and accurate than using the Earth’s rotation as a starting point. Here is a list of some of the most common time standards in use. They are divided into two types, those that are based on Earth’s rotation and those that are based on atomic clocks:

Time standards based on Earth’s rotation
True solar time is based on the solar day – is the period between one solar noon and the next.

Sidereal time is based on the stars. A sidereal day is the time it takes Earth to make one revolution with respect to the stars (not the sun).

Greenwich Mean Time (GMT) based upon when the sun is highest (noon) above the prime meridian (often called the Greenwich meridian). GMT used to be an international time standard before the advent of precise atomic clocks.

Time standards based on atomic clocks

International Atomic Time (TAI) is the international time standard from which the time standards below, including UTC, are calculated. TAI is based on a constellation of atomic clocks from all over the world.

GPS Time Also based on TAI, GPS time is the time told by atomic clocks aboard GPS satellites. Originally the same as UTC, GPS time is currently 17 seconds (precisely) behind as 17 leap seconds have been added to UTC since the satellites were launched.
Coordinated Universal Time (UTC) is based on both atomic time and GMT. Additional Leap seconds are added to UTC to counter the imprecision of Earth’s rotation but the time is derived from TAI making it as accurate.

UTC is the true commercial timescale. Computer systems all over the world synchronize to UTC using NTP time servers. These dedicated devices receive the time from an atomic clock (either by GPS or specialist radio transmissions from organisations like NIST or NPL).

Does my Computer Network Need to be Synchronized to an Atomic Clock?

  |   By

Time synchronization with network time protocol servers (NTP servers) is now a common consideration for network administrators, although, keeping exact time as told by an atomic clock on a computer network is often seen as unnecessary by some administrators

So what are the advantages of synchronizing to an atomic clock and is it necessary for your computer network?  Well the advantages of having accurate time synchronization are manifold but it is the disadvantages of not having it that are most important.

UTC time (Coordinated Universal Time) is a global timescale that is kept accurate by a constellation of atomic clocks from all over the world. It is UTC time that NTP time servers normally synchronize too. Not just that it provides a very accurate time reference to for computer networks to synchronize too but also it is used by millions of such networks across the globe therefore synchronizing to UTC is equivalent to synchronizing a computer network to every other network on the globe.

For security reasons it is imperative that all computer networks are synchronized to a stable time source. This doesn’t have to be UTC any single time source will do unless the network conducts time sensitive transactions with other networks then UTC becomes crucial otherwise errors may occur and these can vary from emails arriving before they were despatched to loss of data.  However, as UTC is governed by atomic clocks it makes it a highly accurate and auditable source of time.

Some network administrators take the shortcut of using an internet time server as a source of UTC time, forgoing the need for a dedicated NTP device. However, there are security risks in doing such a thing. Firstly, the inbuilt security mechanism used by NTP, called authentication, which confirms a time source is where and who it claims it is, is unavailable across the internet. Secondly, internet time servers are outside the firewall which means a UDP port needs to be left open to allow the time signal traffic. This can be manipulated by malicious users or viral programs.

A dedicated NTP time server is external to the network and receives the UTC atomic clock time from with either the GPS satellite system (global positioning system) or specialist radio transmissions broadcast by national physics laboratories.

Time Synchronization Using the GPS Network

  |   By

The GPS (Global Positioning System) systems has revolutionized navigation for pilots, mariners and drivers a like. Nearly every brand new car is sold with an inbuilt satellite navigation system already installed and similar detachable devices continue to sell in their millions.

Yet the GPS system is a multi purpose tool thanks mainly to the technology it employs to provide navigational information. Each GPS satellite contains an atomic clock which signal is used to triangulate positioning information.

GPS has been around since the late 1970’s but it was only in 1983 that is stopped from being purely a tool of the military and was opened up to allow free commercial access following an accidental shooting down of a passenger airliner.

To utilise the GPS system as a timing reference, a GPS clock or GPS time server is required. These devices usually rely on the time protocol NTP (Network Time Protocol) to distribute the GPS time signal that arrives via the GPS antenna.

GPS time is not the same as UTC (Coordinated Universal Time) which is normally used  NTP for time synchronization via radio transmissions or the internet. GPS time did originally match UTC in 1980 during its inception but sine that time there have been leap seconds added to UTC to counteract the variations of the earth’s rotation, however the on-board satellite clocks are corrected to compensate for the difference between GPS time and UTC, which is 17seconds, as of 2009.

By utilising a GPS time server an entire computer network can be synchronized to within a few milliseconds of UTC ensuring that all computers are safe, secure and able to deal effectively with time sensitive transactions.

Facts of Time

  |   By

From wristwatches to atomic clocks and NTP time servers, the understanding of time has become crucial for many modern technologies such as satellite navigation and global communications.

From time dilation to the effects of gravity on time, time has many weird and wonderful facets that scientists are only beginning to understand and utilise. Here are some interesting, weird and unusual facts about time:

•    Time is not separate from space, time makes up what Einstein called four dimensional space time. Space time can be warped by gravity meaning that time slows down the greater the gravitational influence.  Thanks to atomic clocks, time on earth can be measured at each subsequent inch above the earth’s surface. That means that every bodies feet are younger than their head as time runs slower the lower to the ground you get.

•    Time is also affected by speed. The only constant in the universe is the speed of light (in a vacuum) which is always the same. Because of Einstein’s famous theories of relativity anybody travelling at close to the speed of light a journey to an observer that would have taken thousands of years would have passed within seconds. This is called time dilation.

•    There is nothing in contemporary physics that prohibits time travel both forward and backwards in time.

•    There are 86400 seconds in a day, 600,000 in a week, more than 2.6 million in a month and more than 31 million in a year. If you live to be 70 years old then you will have lived through over 5.5 billion seconds.

•    A nanosecond is a billionth of a second or roughly the time it takes for light to travel about 1 foot (30 cm).

•    A day is never 24 hours long. The earth’s rotation is speeding up gradually which means the global timescale UTC (coordinated universal time) has to have leap seconds added once or twice a year. These leap seconds are automatically accounted for in any clock synchronization that uses NTP (Network Time Protocol) such as a dedicated NTP time server.