Perfect Time Synchronization for Windows

  |   By

Most Windows operating systems have an integrated time synchronisation service, installed by default that can synchronise the machine or indeed a network. However, for security reasons, it is highly recommended by Microsoft, amongst others, that an external time source is used.

NTP time servers
securely and accurately receive the UTC time signal from the GPS network or the WWVB radio transmissions (or European alternatives).  NTP time servers can synchronize a single Windows machine or an entire network to within fractions of a second of the correct UTC time (Coordinated Universal Time).

A NTP time server provides precise timing information 24 hours-a-day, 365 days-a-year anywhere on the entire globe. A dedicated NTP time server is the only secure, safe and reliable method of synchronizing a computer network to UTC (Coordinated Universal Time). External to the firewall, an NTP time server does not leave a computer system vulnerable to malicious attacks unlike Internet timing sources via the TCP-IP port.

A NTP time server is not only secure, it receives a UTC time signal direct from atomic clocks unlike Internet timing sources which are really time servers themselves. NTP servers and other time synchronization tools can synchronize entire networks, single PCs, routers and a whole host of other devices. Using either GPS or the North American WWVB signal, a dedicated NTP time server from will ensure all your devices are running to within a fraction of UTC time.

A NTP time server will:

•    Increase network security
•    Prevent data loss
•    Enable logging and tracking of errors or security breaches
•    Reduce confusion in shared files
•    Prevent errors in billing systems and time sensitive transactions
•    Can be used to provide incontestable evidence in legal and financial disputes

Using Atomic Clocks to Synchronize a Network

  |   By

Most computer networks have to be synchronized to some degree. Allowing the clocks on computers across a network to all be telling different times is really asking for trouble. All sorts of errors can occur such as emails not arriving, data getting lost, and errors get unnoticed as the machines struggle to makes sense of the paradoxes that unsynchronized time can cause.

The problem is computers use time in the form of timestamps as the only point of reference between different events. If these don’t match then computers struggle to establish not only the order of events but also if the events took place at all.

Synchronizing a computer network
together is extremely simple, thanks largely to the protocol NTP (Network Time Protocol). NTP is installed on most computer operating systems including Windows and most versions of Linux.

NTP uses a single time source and ensures that every device on the network is synchronized to that time. For many networks this single time source can be anything from the IT manager’s wrist watch to the clock on one of the desktop machines.

However, for networks that have to communicate with other networks, have to deal with time sensitive transactions or where high levels of security are required then synchronization to a UTC source is a must.

Coordinated Universal Time (UTC) is a global timescale used by industry all over the world. It is governed by a constellation of atomic clocks making it highly accurate (modern atomic clocks can keep time for 100 million years without losing a second).

For secure synchronization to UTC there is really only one method and that is to use a dedicated NTP time server. Online NTP servers are used by some network administrators but they are taking a risk not only with the accuracy of the synchronization but also with security as malicious users can imitate the NTP time signal and penetrate the firewall.

As dedicated NTP servers are external to the firewall, relying instead on the GPS satellite signal or specialist radio transmissions they are far more secure.

Synchronizing the Time on your Computer

  |   By

Keeping accurate time is essential for many applications and dedicated NTP time servers make the job easy for network administrators. These devices receive an external time signal, often from GPS or sometimes from broadcast signals put out by organisations such as NIST, NPL and PTB (national physics labs from US, UK and Germany).

Synchronization with a NTP time server is made all the more easier thanks to NTP (network time protocol) this software protocol distributes the time source by constantly checking the time on all devices and adjusting any drift to match the time signal that is received.

Time synchronization is not just the concern of large networks. Even single machines and routers ought to be synchronised because at the very least it will help keep a system secure and make error detection a whole lot easier.

Fortunately, most versions of Windows contain a form of NTP. Often it is a simplified version but it is enough to allow a PC to be synchronized with the global time scale UTC (Coordinated Universal Time). On most Windows machines this is relatively easy to do and can be achieved by double clicking on the clock icon in the task bar then selecting a time provider in the internet time tab.

These time sources are internet based meaning that they are external to the firewall so a UDP port has to be left open to allow the time signal to enter. This can cause some security issues so for those wanting perfect synchronization without any security issues then the best solution is to invest in a dedicated time server. These need not be expensive and as they receive an atomic clock time signal externally then here is no breach in the firewall leaving your network secure.

Reported GPS Fears Should Not Affect Time Synchonisation

  |   By

Following recent media reports on the lack of investment in the USA’s Global Navigation Satellite System – GPS (Global Positioning System) and the potential failure of navigational receivers in recent years, time synchronisation specialists, Galleon Systems, would like to ensure all their customers that any failure of the GPS network will not affect current GPS NTP time servers.

Recent media reports following a study by the US government’s accountability office (GAO), that concluded mismanagement and a lack of investment meant some the current number of 31 operational satellites may fall to below 24 at times in 2011 and 2012 which would hamper its accuracy.

However, the UK’s National Physical Laboratory are confident that any potential problems of the GPS navigation facilities will not affect timing information utilised by GPS NTP servers.

A spokesman for the UK’s National Physical Laboratory confirmed that timing information should be unaffected by any potential future satellite failure.

“There is estimated to be a 20% risk that in 2011-2012 the number of satellites in the GPS constellation could drop below 24 at times.

“If that were to happen, there could be a slight reduction in the position accuracy of GPS receivers at some periods, and in particular they might take longer to acquire a fix in some locations when first powered up. However, even then the effect would be a degradation of performance, rather than complete failure to operate.

“A GPS timing receiver is unlikely to be affected significantly since, once it has determined its position when turned on, every satellite it observes provides it with useful timing information. A small reduction in the number of satellites in view should not degrade its performance much.”

MSF Outage 11 June NPL Maintenance

  |   By

The UK’s MSF signal broadcast from Anthorn, Cumbria and utilised by UK NTP server users is be turned off for a four hour period on 11 June for scheduled maintenance. The MSF 60 kHz time and frequency standard will be off between 10.00 and 14:00 BST (9:00 – 13:00 UTC).

Users of NTP time servers that utilise the MSF signal should be aware of the outage but shouldn’t panic. Most network time servers that use the Anthorn system should still function adequately and the lack of a timing signal for four hours should not create any synchronisation problems or clock drift.

However, any testing of time servers that utilise MSF should be conducted before or after the scheduled outage. Further information is available from NPL.

Any network time server users that require ultra-precise precision or are feel temporary loss of this signal could cause repercussions in their time synchronisation should seriously consider utilising the GPS signal as an additional means of receiving a time signal.

GPS is available literally anywhere on the planet (as long as there is a good clear view of the sky) and is never down due to outages.

For further information on GPS NTP server can be found here.

Computers, Communications, Atomic Clocks and the NTP Server

  |   By

Time synchronisation on computer networks is often conducted by the NTP server. NTP time servers do not generate any timing information themselves but are merely methods of communicating with an atomic clock.

The precision of an atomic clock is widely talked about. Many of them can maintain time to nanosecond precision (billionths of a second) which means they won’t drift beyond a second in accuracy in hundreds of millions of years.

However, what is less understood and talked about is why we need to have such accurate clocks, after-all the traditional methods of keeping time such as mechanical clocks, electronic watches and using the rotation of the Earth to keep track of the days has proved reliable for thousands of years.

However, the development of digital technology over recent years has been nearly solely reliant on the ultra high precision of an atomic clock. One of the most widely used applications for atomic clocks is in the communications industry.

For several years now telephone calls taken in most industrialized countries are now transmitted digitally. However, most telephone wires are simply copper cables (although many telephone companies are now investing in fibre optics) which can only transmit one packet of information at a time. Yet telephone wires have to carry many conversations down the same wires at the same time.

This is achieved by computers at the exchanges switching from one conversation to another thousands of times every second and all this has to be controlled by nano-second precision otherwise  the calls will become out of step and get jumbled – hence the need for. Atomic clocks; mobile phones, digital TV and Internet communications use similar technology.

The accuracy of atomic clocks is also the basis for satellite navigation such as GPS (global positioning system). GPS satellites contain an onboard atomic clock that generates and transmits a time signal. A GPS receiver will receive four of theses signals and use the timing information to work out how long the transmissions took to reach it and therefore the position of the receiver on Earth.

Current GPS systems are accurate to a few metres but to give an indication of how vital precision is, a one second drift of a GPS clock could see the GPS receiver be inaccurate by over 100 thousand miles (because of the  huge distances light and therefore transmissions take in one second).

Many of these technologies that depend on atomic clocks utilise NTP servers as the preferred way to communicate with atomic clocks making the NTP time server one of the most crucial pieces of equipment in the communication industries.

How to Synchronise Your PC to an Atomic Clock

  |   By

The world’s technologies have advanced dramatically over the last few decades with innovations likes the internet and satellite navigation having changed the way we live our lives.

Atomic clocks pay a key role in these technologies; their time signals are what are used by GPS receivers to plot location and many applications and transactions across the internet if it wasn’t for highly precise synchronisation.

In fact a global timescale has been developed that is based on the time told by atomic clocks. UTC (Coordinated Universal Time) ensures that computer networks across the globe can be synchronised to the exact same time.

Synchronising computers and networks to atomic clocks is relatively straight forward thanks in part to NTP (Network Time Protocol), a version of which is included in most operating systems and is also thanks to the number of public NTP servers that exist on the internet.

To synchronise a Windows PC to an atomic clock is done by simply double clocking the clock on the task bar and then configuring the Internet Time tab to a relevant NTP server. A list of public NTP servers can be found at the NTP pool website.

When configuring networks to UTC however, a public NTP server is not suitable as there are security issues about polling a time source outside the firewall. Public servers are also known as stratum 2 servers which means they receive the time from another device that gets it from an atomic clock. This indirect method means that there is often a compromise in accuracy, furthermore if the internet connection goes down or the time server site then the network will soon drift away from UTC.

A far more secure and stable method is to invest in a dedicated NTP time server. These devices receive a time signal directly from an atomic clock, either produced by a national physics lab like NIST or NPL via long wave radio or from GPS satellites.

A single dedicated NTP server will provide a stable, reliable and highly precise source of UTC and allow networks of hundreds and even thousands of devices to be synchronised to NTP.

Why the Need for NTP

  |   By

Network Time Protocol is an Internet protocol used to synchronize computer clocks to a stable and precise time reference. NTP was originally developed by Professor David L. Mills at the University of Delaware in 1985 and is an Internet standard protocol and is used in most network time servers, hence the name NTP server.

NTP was developed to solve the problem of multiple computers working together and having the different time. Whilst, time usually just advances, if programs are running on different computers time should advance even if you switch from one computer to another. However, if one system is ahead of the other, switching between these systems would cause time to jump forward and back.

As a consequence, networks may run their own time, but as soon as you connect to the Internet, effects become visible. Just Email messages arrive before they were sent, and are even replied to before they were mailed!

Whilst this sort of problem may seem innocuous when it comes to receiving email, however, in some environments a lack of synchronisation can have disastrous results this is why air traffic control was one of the first applications for NTP.

NTP uses a single time source and distributes it amongst all devices on a network it does this by using an algorithm that works out how much to adjust a system clock to ensure synchronisation.

NTP works on a hierarchical basis to ensure there are no network traffic and bandwidth problems. It uses a single time source, normally UTC (coordinated universal time) and receives time requests from the machines on the top of the hierarch which then pass the time on further down the chain.

Most networks that utilise NTP will use a dedicated NTP time server to receive their UTC time signal. These can receive the time from the GPS network or radio transmissions broadcast by national physics laboratories. These dedicated NTP time servers are ideal as they receive time direct from an atomic clock source they are also secure as they are situated externally and therefore do not require interruptions in the network firewall.

NTP has been an astronomical success and is now used in nearly 99 per cent of time synchronisation devices and a version of it is included in most operating system packages.

NTP owes much of its success to the development and support it continues to receives nearly three decades after its inception which is why t is now used throughout the world in NTP servers.

Increased Accuracy of Dual NTP Server Systems

  |   By

The NTP time server has revolutionised the synchronisation of computer networks over the last twenty years. NTP (Network Time Protocol) is the software  that  is responsible for distributing time from the time server to the entire network, adjusting machines for drift and assuring accuracy.

NTP can reliable maintain system clocks to within a few millimetres of UTC (Coordinated Universal Time) or whatever timescale it is fed with.

However NTP can only be as reliable as the time source that it receives and as UTC  is the global civil timescale it depends on where the UTC source comes from.

National time and frequency transmissions from physics labs like NIST in the USA or NPL in the UK are extremely reliable sources of UTC and NTP time servers are designed specifically for them. However, the time signals are not guaranteed, they can drop off throughout the day and are susceptible to interference; they are also regularly turned of for maintenance.

For most applications a few hours of your network relying on crystal oscillators will probably not cause too much problems in synchronisation. However, GPS (Global Positioning System) is far more reliable source for UTC time in that a GPS satellite is always overhead. They do require a line-of-sight reception which means an antenna has to go on the roof or outside an open window.

For applications where accuracy and reliability are essential the safest solution is to invest in a dual system NTP time server, these device can receive both the radio transmissions such  as MSF, DCF-77 or WWVB and the GPS signal.

On a dual system NTP server, NTP will take both time sources and to synchronise a network to ensuring increased accuracy and reliability.

Common GPS Queries

  |   By

Is the GPS time signal the same as the GPS positioning signal?

Yes. The signals that are broadcast by GPS satellites contain time information and the position of the satellite it came from (and its velocity). The timing information is generated by an onboard caesium atomic clock. It is this information used by satellite navigation devices (sat navs) that enables global positioning. Sat Navs use these signals from multiple satellites to triangulate a position.

How accurate is GPS positioning?

Because the time signal generated by GPS comes from an atomic clock it is accurate to within 16 nanoseconds (16 billionths of a second). As light travels nearly 186 000 miles in a second this equates to around 16 feet (5+metres) which means a GPS positioning system is usually accurate to this much.

Is GPS time the same as UTC?

No. GPS time, like UTC (Coordinated Universal Time)is based on International Atomic Time (TAI) – the time told by atomic clocks. However as the GPS system was developed several decades ago it is now 14 seconds (and soon to be 15) behind UTC because it has missed out on the Leap Seconds added to UTC to calibrate for the Earth’s slowing rotation.

How can I use GPS as a source of UTC then?

Fortunately a GPS time server will convert GPS to the current UTC time, which as od 1 January 2009 will mean it has to add exactly 15 seconds.