NTP and GPS-based Timing Solutions

  |   By

Ask anybody what the key to network timing is and you will probably get the response NTP (Network Time Protocol).  NTP is a protocol that distributes and checks the time on all network devices to a reference clock – and it is this reference which is the true key to network time synchronisation.

Whilst a version of NTP is easy to obtain – it is normally installed on most operating systems, or is otherwise free to download – but getting a source of time is where the true key to network time synchronisation lies.

Atomic clocks govern the global timescale UTC (Coordinated Universal Time) and it is this timescale that is best for network timing as synchronising all devices on a network to UTC is equivalent of having you network synchronised with every other UTC synced network on Earth.

So getting a source of UTC time is the true key to accurate network time synchronisation, so what are the options?

Internet Time Sources

The obvious choice for most NTP users, but internet time suffers from two major flaws; firstly, internet time operates through the firewall and is therefore fraught with security risks – if the time can get through your firewall, then other things can too. Secondly, internet time sources can be hit and miss with their accuracy.

Due to the fact most internet time sources are stratum 2 devices (they connect to another device that receives the UTC source time) and the distance from client to host can never be truly ascertained or accounted for – it can make them inaccurate – with some internet time sources minutes, hours and even days away from true UTC time.

Radio Referenced Time Server

Another source of UTC time which doesn’t suffer from either security or accuracy flaws is receiving the time from long wave radio signals that some country’s national physics laboratories broadcast. While these signals are available throughout the USA (courtesy of NIST) the UK (NPL) and several other European countries and can be picked up witha basic radio referenced NTP server they are not available everywhere and the signals can be difficult to receive in some urban locations or anywhere where there is electrical interference.

GPS-timing

For completely accurate, secure and a reliable source of UTC time there is no substitute for GPS time. GPS timing signals are beamed directly from atomic clocks onboard the GPS satellites (Global Positioning System) and received by GPS NTP time servers. These can then distribute the atomic clock time around the network.

GPS timing sources are accurate, secure and available literally anywhere on the planet 24 hours a day.

Understanding GPS Time in Relation to UTC

  |   By

Accurate time is so important for modern computer systems that it is now unimaginable for any network administer to configure a computer system without any regard to synchronisation.

Ensuring all machines are running an accurate and precise time, and that the entire network is synchronised together, will prevent problems arising such as data loss, failure of time sensitive transactions and enable debugging and error management which can be near impossible on networks that lack synchronicity.

There are many sources of accurate time for use with NTP time servers (Network Time Protocol). NTP servers tend to use time that is controlled by atomic clocks to ensure accuracy, and there are advantages and disadvantages to each system.

Ideally as a source of time you want it to be a source of UTC (Coordinated Universal Time) as this is the international time standard as used by computer systems worldwide. But UTC is not always accessible but there is an alternative.

GPS time

GPS time is the time as relayed by the atomic clocks on board GPS satellites. These clocks form the basic technology for the Global Positioning System and their signals are what are used to work out positing information.

But GPS time signals can also provide an accurate source of time for computer networks – although strictly speaking GPS time does differ to UTC.

No Leap Seconds

GPS time is broadcast as an integer. The signal contains the number of seconds from when the GPS clocks were first turned on (January 1980).

Originally GPS time was set to UTC but since GPS satellite have been in space the last thirty years, unlike UTC, there has been no increase to account for leap seconds – so currently GPS is running exactly 17 seconds behind UTC.

Conversion

Whilst GPS time and UTC are not strictly the same as they were originally based on the same time and only the lack of leap seconds not added to GPS makes the difference, and as this is exact in seconds, conversion of GPS time is simple.

Many GPS NTP servers will convert GPS time to UTC time (and local time if you so wish) ensuring you can always have an accurate, stable, secure and reliable source of atomic clock based time.

When Time Servers go Bad

  |   By

“Time is what prevents everything from happening at once,’ said eminent physicist John Wheeler. And when it comes to computers his words couldn’t be any more relevant.

Timestamps are the only method that a computer has to establish if an event has occurred, is meant to occur or shouldn’t be occurring just yet. For a home PC, the computer relies on the inbuilt clock that displays the time on the corner of your operating system, and for most home uses this is satisfactory enough.

However for computer networks that have to communicate with each other, relying in individual system clocks can cause untold problems:

All clocks drift, and computer clocks are no different and problems occur when two machines are drifting at different rates as the time does not match up. This poses a conundrum for a computer as it is unsure of which time to believe and time critical events can fail to occur and even simple tasks like sending an email can cause time confusion on a network.

For these reasons, time servers are commonly used to receive the time from an external source and distribute it around the network. Most of these devices use the protocol NTP (Network Time Protocol) which is designed to provide a method of synchronising time on a network.

However, time servers are only as good as the time source that they rely on and when there is a problem with that source, synchronisation will fail and the problems mentioned above can occur.

The most common cause for time server failure or inaccuracy is the reliance on internet based sources of time. These can neither be authenticated by NTP nor guaranteed to be accurate and they can also lead to security issues with firewall intrusion and other malicious attacks.

Ensuring the NTP time server continues to get a source of highly accurate time is fairly straight forward and is all a matter of choosing an accurate, reliable and secure time source.

In most parts of the world there are two methods that can provide a secure and reliable source of time:

  • GPS time signals
  • Radio referenced time signals

GPS signals are available anywhere on the planet and are based on GPS time which is generated by atomic clocks onboard the satellites.

Radio referenced signals like MSF and WWVB are broadcast on long wave from physics laboratories like NIST and NPL.

European Rival to GPS takes a Further Step Forward

  |   By

The long awaited European rival to the USA Global Positioning System, Galileo, has taken a step forward to realisation with the delivery of the payload for first satellite.

The payload, which contains the “brains” of the Galileo satellite, includes the atomic clocks that are the basis for all global navigation satellite systems (GNSS) and provide both the positing information and the GPS time signal used by so many GPS NTP time servers for network synchronisation.

Galileo is set to not only rival the current American run GPS system, but for time synchronisation applications it is expected to operate in tandem ensuring even greater accuracy for those seeking a source of UTC time.

Galileo has undergone a lot of uncertainty since the multi-billion Euro project was first designed over a decade ago but the delivery of the first satellite’s payload to Rome, where the equipment is being finalised in preparation for launch early next year, is a real boon to the project which has often fallen into doubt.

Just like GPS, Galileo will be a fully operation navigational satellite system but will offer even greater accuracy that its aging predecessor and provide Europe with their own navigational system that isn’t owned and controlled by the US military.

As well as the positing information that will be used by motorists, pilots and other travellers, Galileo will also provide a secure and accurate source of time for the world’s computer networks and technologies to ensure synchronicity.

Currently, GPS is alone in providing this secure service, although radio transmissions in some countries provide an alternative to the GPS time server signals, although they are not as wide spread as GPS.

The first Galileo satellite is expected to reach orbit in early 2011, with the entire network planned to be operation in 2014 – although if past experiences with the project are anything to go on – you should expect at least a few delays.

Choosing a Source of Time for an NTP Synchronization

  |   By

Accurate time is essential in the modern world of internet banking, online auctions and global finance. Any computer network that is involved in global communication needs to have an accurate source of the global timescale UTC (Coordinated Universal Time) to be able to talk to other networks.

Receiving UTC is simple enough. It is available from multiple sources but some are more reliable than others:

Internet Time Sources

The internet is awash with time sources. These vary in reliability and accuracy but some trusted organisations like NIST (National Institute of Standards and Time) and Microsoft. However, there are disadvantages with internet time sources:

Reliability – The demand for internet sources of UTC often means it can be difficult to access them

Accuracy – most internet time servers are stratum 2 devices which means they rely on a source of time themselves. Often errors can occur and many sources of time can be very inaccurate.

Security – Perhaps the biggest issue with internet time sources is the risk they pose to security. To receive a time stamp from across the internet the firewall needs to have an opening to allow the signals to pass through; this can lead to malicious users taking advantage.

Radio Referenced Time Servers.

A secure method of receiving UTC time stamps is available by using a NTP time server that can receive radio signals from labs like NIST and NPL (National Physical Laboratory. Many countries have these broadcasted time signals which are highly accurate, reliable and secure.

GPS Time servers

Another source for dedicated time servers is GPS. The big advantage of a GPS NTP time server is that the time source is available everywhere on the planet with a clear view of the sky. GPS time servers are also highly accurate, reliable and just as secure as radio referenced time servers.

GPS as a Timing Reference for NTP servers

  |   By

The GPS system is familiar to most people. Many cars now have a GPS satellite navigation device in their cars but there is more to the Global Positioning System than just wayfinding.

The Global Positioning System is a constellation of over thirty satellites all spinning around the globe. The GPS satellite network has been designed so that at any point in time there is at least four satellites overhead – no matter where you are on the globe.

Onboard each GPS satellite there is a highly precise atomic clock and it is the information from this clock that is sent through the GPS transmissions which by triangulation (using the signal from multiple satellites) a satellite navigation receiver can work out your position.

But these ultra precise timing signals have another use, unbeknown to many users of GPS systems. Because the timing signals from the GPS atomic clocks are so precise, they make a good source of time for synchronising all sorts of technologies – from computer networks to traffic cameras.

To utilise the GPS timing signals, a GPS time server is often used. These devices use NTP (Network Time Protocol) to distribute the GPS timing source to all devices on the NTP network.

NTP regularly checks the time on all the systems on its network and adjusts it accordingly if it has drifted to what the original GPS timing source is.

As GPS is available anywhere on the planet it provides a really handy source of time for many technologies and applications ensuring that whatever is synchronised to the GPS timing source will remain as accurate as possible.

A single GPS NTP server can synchronize hundreds and thousands of devices including routers, PCs and other hardware ensuring the entire network is running perfectly coordinated time.

Technologies that rely on Atomic Clocks (Part 1)

  |   By

Atomic clocks are the most accurate timekeeping devices known to man. There accuracy is incomparable to other clocks and chronometers in that whilst even the most sophisticated electronic clock will drift by a second every week or two, the most modern atomic clocks can keep running for thousands of years and not lose even a fraction of a second.

The accuracy of an atomic clock is down to what they use as their basis for time measurement. Instead of relying on an electronic current running through a crystal like an electronic clock, an atomic clock uses the hyperfine transition of an atom in two energy states. Whilst this may sound complicated, it is just an unfaltering reverberation that ‘ticks’ over 9 billion times each second, every second.

But why such accuracy really necessary and what technologies are atomic clocks employed in?

It is by examining the technologies that utilise atomic clocks that we can see why such high levels of accuracy are required.

GPS – Satellite navigation

Satellite navigation is a huge industry now. Once just a technology for the military and aviators, GPS satellite navigation is now used by road users across the globe. However, the navigational information provided by satellite navigation systems like GPS is solely reliant on the accuracy of atomic clocks.

GPS works by triangulating several timing signals that are deployed from atomic clocks onboard the GPS satellites. By working out when the timing signal was released from the satellite the satellite navigational receiver can just how far away it is from the satellite and by using multiple signals calculate where it is in the world.

Because of these timing signals travel at the speed of light, just one second inaccuracy within the timing signals could lead to the positing information being thousands of miles out. It is testament to the accuracy of GPS atomic clocks that currently a satellite navigation receiver is accurate to within five metres.

The Effect of Solar Flares on GPS

  |   By

Forthcoming space weather may affect GPS devices including satellite navigation and NTP GPS time servers.

Whilst many of us have had to cope with some extreme weather last winter, further storms are on their way – this time from space.

Solar flares are a regular occurrence on the surface of the sun. Whilst scientists are not completely sure what causes them we know two things about solar flares: – they are cyclical – and are related to sunspot activity.

For that last eleven years the sun’s sunspot activity – small dark depressions that appear on the surface of the sun – has been very minimal. But this eleven year cycle has come to an end and there has been a rise in sun spots at the end of last year meaning 2010 will be a bumper year for both sunspots and solar flares.

But there is no need to worry about becoming toasted by solar flares as these bursts of hot gases that flare from the sun never get far enough to reach the Earth, however, they can effect us in different ways.

Solar flares are bursts of energy and as such emit radiation and high energy particles. On earth, we are protected by these blasts of energy and radiation by the earth’s magnetic field and ionosphere, however, satellite communications are not and this can lead to trouble.

Whilst the effect of solar flare radiation is very weak, it can slow down and reflect radio waves as they travel through the ionosphere towards Earth. This interference can cause GPS satellites in particular extreme problems as they are reliant on accuracy to provide navigational information.

While the effects of solar flares are mild, it is possible GPS devices will encounter brief periods of no signal and also the problem of inaccurate signals meaning positing information may become unreliable.

This will not just affect navigation either as the GPS system is used by hundreds and thousands of computer networks as a source of reliable time.

Whilst most dedicated GPS time servers should be able to cope with periods of instability without losing precision, for worried network administrators not wanting to go into work to find their systems have crashed because of a lack of synchronisation may want to consider using a radio referenced Network time server that uses broadcast transmission such as MSF or WVBB.

Dual NTP time servers (Network Time Protocol) are also available that can receive both radio and GPS, ensuring a source of time is always constantly available.

Choosing a Time Server for your Network

  |   By

Any network administrator will tell you how important time synchronization is for a modern computer network. Computers rely on the time for nearly everything, especially in today’s age of online trading and global communication where accuracy is essential.

Failing to ensure that computers are accurately synced together could lead to all manner of problems: data loss, security vulnerabilities, unable to conduct time sensitive transactions and difficulties debugging can all be caused by a lack of, or not adequate enough, time synchronization.

But ensuring every computer on a network has the exact same time is simple thanks to two technologies: the atomic clock and the NTP server (Network Time Protocol).

Atomic clocks are extremely accurate chronometers. They can keep time and not drift by as much of a second in thousands of years and it is this accuracy that has made possible technologies and applications such as satellite navigation, online trading and GPS.

Time synchronization for computer networks is controlled by the network time server, commonly referred to as the NTP server after the time synchronization protocol they use, Network Time Protocol.
When it comes to choosing a time server, there are really only two real type – the radio reference NTP time server and the GPS NTP time server.

Radio reference time servers receive the time from long wave transmission broadcast by physics laboratories like NIST in North America or NPL in the UK. These transmissions can often be picked up throughout the country of origin (and beyond) although local topography and interference from other electrical devices can interfere with the signal.

GPS time servers, on the other hand, use the satellite navigation signal transmitted from GPS satellites. The GPS transmissions are generated by atomic clocks onboard the satellites so they are a highly accurate source of time just like the atomic clock generated time broadcast by the physics laboratories.

Apart from the disadvantage of having to have a roof top antenna (GPS works by line of sight so a clear view of the sky is essential), GPS is obtainable literally everywhere on the planet.

As both types of time server can provide an accurate source of reliable time the decision of which type of time server should be based on the availability of long wave signals or whether it is possible to install a rooftop GPS antenna.

Dealing with Time across the Globe

  |   By

No matter where we are in the world we all need to know the time at some point in the day but while each day lasts for the same amount of time no matter where you are on Earth the same timescale is not used globally.

The impracticality of Australians having to wake up at 17.00 or those in the US having to start work at 14.00 would rule out suing a single timescale, although the idea was discussed when the Greenwich was named the official prime meridian (where the dateline officially is) for the world some 125 years ago.

While the idea of a global timescale was rejected for the above reasons, it was later decided that 24 longitudinal lines would split the world up into different timezones. These would emanate from GMT around with those on the opposite side of the planet being +12 hours.

However, by the 1970’s a growth in global communications meant that a universal timescale was finally adopted and is still in much use today despite many people having never heard of it.

UTC, Coordinated Universal Time, is based on GMT (Greenwich Meantime) but is kept by a constellation of atomic clocks. It also accounts for variations in earth’s rotation with additional seconds known as ‘leap seconds’ added once of twice a year to counteract the slowing of the Earth’s spin caused by gravitational and tidal forces.

While most people have never heard of UTC or use it directly its influence on our lives in undeniable with computer networks all synchronised to UTC via NTP time servers (Network Time Protocol).

Without this synchronisation to a single timescale many of the technologies and applications we take for granted today would be impossible. Everything from global trading on stocks and shares to internet shopping, email and social networking are only made possible thanks to UTC and the NTP time server.