Mechanisms of Time History of Chronological Devices

  |   By

Nearly every device seems to have a clock attached to it these days. Computers, mobile phones and all the other gadgets we use are all good sources of time. Ensuring that no matter where you are a clock is never that far away – but it wasn’t always this way.

Clock making, in Europe, started around the fourteenth century when the first simple mechanical clocks were developed. These early devices were not very accurate, losing perhaps up to half an hour a day, but with the development of pendulums these devices became increasingly more accurate.

However, the first mechanic al clocks were not the first mechanical devices that could tell and predict time. Indeed, it seems Europeans were over fifteen hundred years late with their development of gears, cogs and mechanical clocks, as the ancients had long ago got there first.

Early in the twentieth century a brass machine was discovered in a shipwreck (Antikythera wreck) off Greece, which was a device as complex as any clock made in Europe up in the mediaeval period. While the Antikythera mechanism is not strictly a clock – it was designed to predict the orbit of planets and seasons, solar eclipses and even the ancient Olympic Games – but is just as precise and complicated as Swiss clocks manufactured in Europe in the nineteenth century.

While Europeans had to relearn the manufacture of such precise machines, clock making has moved on dramatically since then. In the last hundred or so years we have seen the emergence of electronic clocks, using crystals such as quartz to keep time, to the emergence of atomic clocks that use the resonance of atoms.

Atomic clocks are so accurate they won’t drift by even a second in a hundred thousand years which is phenomenal when you consider that even quartz digital clocks will drift several seconds n a day.

While few people will have ever seen an atomic clock as they are bulky and complicated devices that require teams of people to keep them operational, they still govern our lives.

Much of the technologies we are familiar with such as the internet and mobile phone networks, are all governed by atomic clocks. NTP time servers (Network Time Protocol) are used to receive atomic clock signals often broadcast by large physics laboratories or from the GPS (Global Positioning System) satellite signals.

NTP servers then distribute the time around a computer network adjusting the system clocks on individual machines to ensure they are accurate. Typically, a network of hundreds and even thousands of machines can be kept synchronised together to an atomic clock time source using a single NTP time server, and keep them accurate to within a few milliseconds of each other (few thousandths of a second).

How Atomic Clocks Control our Transport Systems

  |   By

Getting from A to B has been a primary concern for societies ever since the first roads were built. Whether it is horseback, carriage, train, car or plane – transportation is what enables societies to grow, prosper and trade.

In today’s world, our transportation systems are highly complex due to the sheer numbers of people who are all trying to get somewhere – often at similar times such as rush hour. Keeping the motorways, highways and railways running, requires some sophisticated technology.

Traffic lights, speed cameras, electronic warning signs, and railway signals and point systems have to be synchronised for safety and efficiency. Any differences in time between traffic signals, for instance, could lead to traffic queues behind certain lights, and other roads remaining empty. While on the railways, if points systems are being controlled by an inaccurate clock, when the trains arrive the system may be unprepared or not have switched the line – leading to catastrophe.

Because of the need for secure, accurate and reliable time synchronisation on our transport systems, the technology that controls them is often synchronised to UTC using atomic clock time servers.

Most time servers that control such systems have to be secure so they make use of Network Time Protocol (NTP) and receive a secure time transmission either utilising atomic clocks on the GPS satellites (Global Positioning System) or by receiving a radio transmission from a physics laboratory such as NPL (National Physical Laboratory) or NIST (National Institute of Standards and Time).

In doing so, all traffic and rail management systems that operate on the same network are accurate to each other to within a few milliseconds of this atomic clock generated time and the NTP time servers that keep them synchronised ensures they stay that way, making minute adjustments to each system clock to cope with the drift.

NTP servers are also used by computer networks to ensure that all machines are synced together. By using a NTP time server on a network, it reduces the probability of errors and ensures the system is kept secure.

Origin of Synchronisation (Part 1)

  |   By

Part One

With modern NTP servers (Network Time Protocol) synchronisation is made easy. By receiving a signals from GPS or radio signals such as MSF or WWVB, computer networks consisting of hundreds of machines can easily be synchronised together, ensuring trouble free networking and accurate time-stamping.

Modern NTP time servers are reliant on atomic clocks, accurate to billions of parts of a second, but atomic clocks have only been around for the last sixty years and synchronisation has not always been so easy.

In the early days of chronology, clocks mechanical in nature, were not very accurate at all. The first time-pieces could drift by up to an hour a day so the time could differ from town clock to town clock, and most people in the agricultural based society regarded them as a novelty, relying in stead on sunrise and sunset to plan their days.

However, following the industrial revolution, commerce became more important to society and civilisation, and with it, the need to know what the time was; people needed to know when to go to work, when to leave and with the advent of railways, accurate time became even more crucial.

In the early days if industry, workers were often woken for work by people paid to wake them up. Known as ‛knocker-uppers.’ Relying on the factory time-peice, they would go around town and tap on people’s windows, alerting them to the start of the day, and the factory hooters signalled the beginning and end of shifts.

However, as commerce developed time became even more crucial, but as it would take another century or so for more accurate timepieces to develop (until at least the invention of electronic clocks), other methods were developed.

To follow…

An End to British Summer Time?

  |   By

The new UK government is to look again at the perennial debate about changing the clocks during the summer months from GMT (Greenwich Mean Time) to British Summer Time (BST).

While the move is controversial, with many in Scotland in the north of the UK, unwilling to adopt the change due to the longer dark days of winter they experience over the rest of the country – the move would help synchronise Britain with the rest of Europe.

Despite its positing in the European Union, Britain holds a different timescale to the rest of Europe. People from the UK who travel abroad have to advance their watches an hour every-time they travel to mainland Europe.

In the new proposals, daylight saving time will still continue but the standard winter time will be advanced an hour and a further advancement of an hour for the summer – know as double British Summertime – allowing the UK to have the same time as Europe.

However, despite the problems such a change would have to people; technology will not be affected by any alteration in daylight saving time.

UTC Time

Technology, such as computer networks, all use a universal time – UTC (Coordinated Universal Time). UTC is a global timescale, kept true by an international conglomeration of atomic clocks. This means whether you have a UK based computer network, or a one on the other side of the world, to the technologies – the time is the same.

Most technologies receive this time from an atomic clock source using devices known as NTP servers (after the time protocol: Network Time Protocol). NTP servers take advantage of the atomic clocks onboard GPS satellites so they can not only supply an accurate source of time but they can assure that the time source never drifts.

Other methods of getting an atomic clock source of time include using medium wave transmissions broadcast by places like the UK’s National Physical Laboratory (NPL) or the American National Institute for Standards and Time.

NTP servers ensure that no matter where you are in the world the source of time your computers and technology utilise is always Coordinated Universal Time – no matter what the time of year.



Using Internet Time for Computer Synchronization

  |   By

Ensuring your network is synchronized is a vital part of modern computing. Failure to do so, and having different machines telling different times is a recipe for disaster and can cause untold problems, not to mention making it almost impossible to debug or log errors.

And it is not just your own network you need to synchronize to either. With so many networks talking to each other, it is important that all networks synchronize to the same time-scale.

UTC (Coordinated Universal Time) is just such a global timescale. It is controlled by an international constellation of atomic clocks and enables computers all over the world to talk to each other in perfect synchronicity.

But how do you sync to UTC?

The internet is awash with sources of internet time. Most modern operating systems, especially in the Windows flavour, are set up to do this automatically (just by clicking the time/date tab on the clock menu). The computer will then regularly check the time server (usually at Microsoft or NIST, although others can be used) and adjust the computer to ensure its time matches.

Most internet time servers are known as stratum 2 devices. This means they take the time from another device but where does that get the time from?

NTP time servers

The answer is that somewhere on the stratum tree there will be a stratum 1 device. This will be a time server that receives the time direct from an atomic clock source. Often this is by GPS but there are radio referenced alternatives in several countries. These stratum 1 NTP (Network Time Protocol) time servers then provide the stratum 2 devices with the correct time – and its these devices we get our internet time from.

Drawbacks to Internet time

There are several drawbacks to relying on the Internet for time synchronisation. Accuracy is one consideration. Normally, a stratum 2 device will provide ample enough precision for most networks; however, for some users who require high levels of accuracy or deal in a lot of time sensitive transactions a stratum 2 time server may not be accurate enough.

Another problem with internet time servers is that they require an open port in the firewall. Keeping the NTP access on UDP port 123 open all the time could lead to security issues, especially as internet time sources can’t be authenticated or guaranteed.

Using a Stratum 1 NTP Time server

Stratum 1 NTP time servers are easily installed on most networks. Not only will they provide a higher accurate source of time but as they receive the time externally (from GPS or radio) they are highly secure and can’t be hijacked by malicious users or viral software.

Ensure Accurate Time with an Atomic Wall Clock

  |   By

Written By Richard Williams for Galleon Systems

Accuracy in timekeeping is forever becoming more important in the modern global economy. Industries and business around the globe are now often communicating with each despite the time zone differences.

There was a time when a few minutes here or there rarely mattered but now, knowing exactly what time it is has become more and more important as conference calls and over-the-internet webinars are often scheduled as part of regular business.

Global Timescale

Fortunately, to prevent the headache of working out all the different time-zones you may have to deal with, there is a global timescale that is now adopted by the global community. UTC (Coordinated Universal Time) is an atomic clock controlled time used globally and kept precise and accurate by physics laboratories around the world.

UTC enables accurate communication and forms and is used by many high end technologies to ensure accuracy such as the network time server (NTP server – Network Time Protocol). Often these devices receive the UTC time directly from atomic clocks thanks to radio broadcasts from people like NIST (USA’s National Institute for Standards and Time) and NPL (UK’s National Physical Laboratory)

Atomic Wall Clocks

And when it comes to people telling the time, these same radio signals can also be utilised by an atomic wall clock. Atomic wall clocks, despite what the name suggests, are not atomic clocks. In essence they are comprised of a standard clock device and a radio antenna and receive. The atomic clocks signals broadcast by the physics laboratories can be received and the clock regularly adjusts itself to ensure that the clock is accurate to UTC to the second.

European Rival to GPS takes a Further Step Forward

  |   By

The long awaited European rival to the USA Global Positioning System, Galileo, has taken a step forward to realisation with the delivery of the payload for first satellite.

The payload, which contains the “brains” of the Galileo satellite, includes the atomic clocks that are the basis for all global navigation satellite systems (GNSS) and provide both the positing information and the GPS time signal used by so many GPS NTP time servers for network synchronisation.

Galileo is set to not only rival the current American run GPS system, but for time synchronisation applications it is expected to operate in tandem ensuring even greater accuracy for those seeking a source of UTC time.

Galileo has undergone a lot of uncertainty since the multi-billion Euro project was first designed over a decade ago but the delivery of the first satellite’s payload to Rome, where the equipment is being finalised in preparation for launch early next year, is a real boon to the project which has often fallen into doubt.

Just like GPS, Galileo will be a fully operation navigational satellite system but will offer even greater accuracy that its aging predecessor and provide Europe with their own navigational system that isn’t owned and controlled by the US military.

As well as the positing information that will be used by motorists, pilots and other travellers, Galileo will also provide a secure and accurate source of time for the world’s computer networks and technologies to ensure synchronicity.

Currently, GPS is alone in providing this secure service, although radio transmissions in some countries provide an alternative to the GPS time server signals, although they are not as wide spread as GPS.

The first Galileo satellite is expected to reach orbit in early 2011, with the entire network planned to be operation in 2014 – although if past experiences with the project are anything to go on – you should expect at least a few delays.

Synchronizing a PC to an Atomic Clock

  |   By

Atomic clocks are without doubt the most accurate time pieces on the face of the planet. In fact the accuracy of an atomic clock in incomparable to any other chronometer, watch or clock.

While an atomic clock will not lose even a second in time in thousands upon thousands of years, you’re average digital watch will perhaps lose a second in just a few days which after a few weeks or months will mean your watch is running slow or fast by several minutes.

The same can also be said for the system clock that controls your computer the only difference is that computers rely even more heavily on time than we ourselves do.

Nearly everything a computer does is reliant on timestamps, from saving work to performing applications, debugging and even emails are all reliant on timestamps which can be a problem if the clock on your computer is running too fast or slow as errors can quite often occur, especially if you are communicating with another computer or device.

Fortunately, most PCs are easily synchronized to an atomic clock meaning they can be accurate as these powerful time keeping devices so any tasks performed by your PC can be in perfect synchronicity with whatever device you are communicating with.

In most PC operating systems an inbuilt protocol (NTP) allows the PC to communicate with a time server that is connected to an atomic clock. In most versions of Windows this is accessed through the date and time control setting (double clicking the clock in the bottom right).

However, for business machines or networks that require secure and accurate time synchronization, online time servers are just not secure or accurate enough to ensure your network is not vulnerable to security flaws.

However, NTP time servers that receive the time direct from atomic clocks are available that can synchronize entire networks. These devices receive a broadcasted timestamp distributed by either national physics laboratories or via the GPS satellite network.

NTP servers enable entire networks to all have exactly synchronized time which is as accurate and secure as is humanly possible.

NTP Time Servers Keeping Technology Precise

  |   By

Atomic clocks are much underrated technologies their development has revolutionised the way we live and work and has made possible technologies that would be impossible without them.

Satellite navigation, mobile phones, GPS, the internet, air traffic control, traffic lights and even CCTV cameras are reliant on the ultra precise timekeeping of an atomic clock.

The accuracy of an atomic clock is incomparable to other time keeping devices as they don’t drift by even a second in hundreds of thousands of years.

But atomic clocks are large sensitive devices that need team of experienced technicians and optimum conditions such as those found in a physics laboratory. So how do all these technologies benefit from the high precision of an atomic clock?

The answer is quite simple, the controllers of atomic clocks, usually national physics laboratories, broadcast via long wave radio the time signals that their ultra precise clocks produce.

To receive these time signals, servers that use the time synchronization protocol NTP (Network Time Protocol) are employed to receive and distribute these timestamps.

NTP time servers, often referred to as network time servers, are a secure and accurate method of ensuring any technology is running accurate atomic clocks time. These time synchronization devices can synchronise single devices or entire networks of computers, routers and other devices.

NTP servers that use GPS signals to receive the time from the atomic clock satellites are also commonly used. These NTP GPS time servers are as accurate as those that receive the time from physics laboratories but use the weaker, line of sight GPS signal as their source.

Technologies that rely on Atomic Clocks (Part 2)

  |   By

GPS is not the only technology that is dependent on atomic clocks. The high levels of accuracy that are supplied by atomic clocks are used in other crucial technologies that we take for granted everyday.

Air traffic Control Not only are all aeroplanes and airliners now equipped with GPS to enable pilots and ground staff to know their exact location but atomic clocks are also used by air traffic controllers who need precise and accurate measurements and time between planes.

Traffic Lights and Road Congestion Systems – Traffic lights are another system that relies on atomic clock timing. Accuracy and synchronization is vital for traffic light systems as small errors in synchronization could lead to fatal accidents.

Congestion cameras and other systems such as parking metres also use atomic clocks as a basis of their timekeeping as this prevents any legal issues when issuing penalty notices.

CCTV – Closed circuit television is another large scale user of atomic clocks. CCTV cameras are often used in the fight against crime but as evidence they are ineffective in a court of law unless the timing information on the CCTV camera can be proved to be accurate. Failure to do so could lead to criminals escaping prosecution because despite the identification by the camera, proof that it was at the time and date of the offence can’t be clarified without accuracy and synchronization.

Internet – Many of the applications we now entrust to the internet are only made possible thanks to atomic clocks. Online trading, internet banking and even online auction houses all need accurate and synchronized time.

Imagine taking your savings from your bank account only finding that you can withdraw them again because another computer has a slower clock or imagine bidding on an internet auction site only to have your bid rejected by a bid that came before yours because it was made on a computer with a slower clock.

Using atomic clocks as a source for time is relatively straight forward for many technologies. Radio signals and even the GPS transmissions can be used as a source of atomic clock time and for computer systems, the protocol NTP (Network Time Protocol) will ensure any sized network will be synchronized perfectly together. Dedicated NTP time servers are used throughout the world in technologies and applications that require precise time.