Synchronising to an Atomic Clock

By on

Atomic clocks are the pinnacle of time keeping devices. Modern atomic clocks can keep time to such accuracy that in 100,000,000 years (100 million) they do not lose even a second in time. Because of this high level of accuracy, atomic clocks are the basis for the world’s timescale.

To allow global communication and time sensitive transactions such as the buying of stacks and shares a global timescale, based on the time told by atomic clocks, was developed in 1972. This timescale, Coordinated Universal Time (UTC) is governed and controlled by the International Bureau of weights and Measures (BIPM) who use a constellation of over 230 atomic clocks from 65 laboratories all over the world to ensure high levels of accuracy.

Atomic clocks are based on the fundamental properties of the atom, known as quantum mechanics.  Quantum mechanics suggest that an electron (negatively charged particle) that orbits an atom’s nucleus can exist in different levels or orbit planes depending if they absorb or release the correct amount of energy. Once an electron has absorbed or released enough energy in can ‘jump’ to another level, this is known as a quantum jump.

The frequency between these two energy states is what is used to keep time. Most atomic clocks are based on the caesium atom which has 9,192,631,770 periods of radiation corresponding to the transition between the two levels. Because of the accuracy of caesium clocks the BIPM now considers a second to be defined as 9,192,631,770 cycles of the caesium atom.

Atomic clocks are used in thousands of different applications where precise timing is essential. Satellite communication, air traffic control, internet trading and GPs all require atomic clocks to keep time. Atomic clocks can also be used as a method of synchronising computer networks.

A computer network using a NTP time server can use either a radio transmission or the signals broadcast by GPS satellites (Global Positioning System) as a timing source. The NTP program (or daemon) will then ensure all devices on that network will be synchronised to the time as told by the atomic clock.

By using a NTP server synchronised to an atomic clock, a computer network can run the identical coordinated universal time as other networks allowing time sensitive transactions to be conducted from across the globe.

hello

This post was written by:

Richard N Williams is a technical author and a specialist in the NTP Server and Time Synchronisation industry. Richard N Williams on Google+