Category: gps time server

Understanding GPS Time in Relation to UTC

  |   By

Accurate time is so important for modern computer systems that it is now unimaginable for any network administer to configure a computer system without any regard to synchronisation.

Ensuring all machines are running an accurate and precise time, and that the entire network is synchronised together, will prevent problems arising such as data loss, failure of time sensitive transactions and enable debugging and error management which can be near impossible on networks that lack synchronicity.

There are many sources of accurate time for use with NTP time servers (Network Time Protocol). NTP servers tend to use time that is controlled by atomic clocks to ensure accuracy, and there are advantages and disadvantages to each system.

Ideally as a source of time you want it to be a source of UTC (Coordinated Universal Time) as this is the international time standard as used by computer systems worldwide. But UTC is not always accessible but there is an alternative.

GPS time

GPS time is the time as relayed by the atomic clocks on board GPS satellites. These clocks form the basic technology for the Global Positioning System and their signals are what are used to work out positing information.

But GPS time signals can also provide an accurate source of time for computer networks – although strictly speaking GPS time does differ to UTC.

No Leap Seconds

GPS time is broadcast as an integer. The signal contains the number of seconds from when the GPS clocks were first turned on (January 1980).

Originally GPS time was set to UTC but since GPS satellite have been in space the last thirty years, unlike UTC, there has been no increase to account for leap seconds – so currently GPS is running exactly 17 seconds behind UTC.

Conversion

Whilst GPS time and UTC are not strictly the same as they were originally based on the same time and only the lack of leap seconds not added to GPS makes the difference, and as this is exact in seconds, conversion of GPS time is simple.

Many GPS NTP servers will convert GPS time to UTC time (and local time if you so wish) ensuring you can always have an accurate, stable, secure and reliable source of atomic clock based time.

Choosing a Source of Time for Computer Network Synchronization

  |   By

You don’t need me to tell you how important computer network time synchronization is. If you are reading this then you are probably well aware of the importance in ensuring all your computers, routers and devices on your network are running the same time.

Failure to synchronize a network can cause all sorts of problems, although with a lack of synchronicity the problems may go unnoticed as error finding and debugging a network can be nigh on impossible without a source of synchronized time.

There are multiple options for finding a source of accurate time too. Most time sources used for synchronisation are a source of UTC (Coordinated Universal Time) which is the international timescale.
However, there are pro’s and con’s to all sources:

Internet time

There are an almost an endless number of sources of UTC time on the internet. Some of these time sources are wholly inaccurate and unreliable but there are some trusted sources put out by people like NIST (National Institute for Standards and Time) and Microsoft.

However, regardless of how trusted the time source is, there are two problems with internet time sources. Firstly, an internet time server is actually a stratum 2 device. In other words, an internet time server is connected to another time server that gets its time from an atomic clock, usually from one of the sources below. So an internet source of time is never going to be as accurate or precise as using a stratum 1 time server yourself.

Secondly, and more importantly, internet sources of time operate through the firewall so a potential security breach is available to any malicious user who wishes to take advantage of the open ports.

GPS Time

GPS time is far more secure. Not only is a GPS time signal available anywhere with a line of sight view of the sky, but also GPS time signals can be received externally to the network. By using a GPS time server the GPS time signals can be received and by using NTP (Network Time Protocol) this time can be converted to UTC (GPS time is currently 17 seconds exactly behind GPS time) then distributed around the network.

MSF/WWVB Time

Radio broadcasts in long wave are transmitted by several national physics labs. NIST and the UK’s NPL are two such organisations and they transmit the UTC signals MSF (UK) and WWVB (USA) which can be received and utilised by a radio referenced NTP server.

When Time Servers go Bad

  |   By

“Time is what prevents everything from happening at once,’ said eminent physicist John Wheeler. And when it comes to computers his words couldn’t be any more relevant.

Timestamps are the only method that a computer has to establish if an event has occurred, is meant to occur or shouldn’t be occurring just yet. For a home PC, the computer relies on the inbuilt clock that displays the time on the corner of your operating system, and for most home uses this is satisfactory enough.

However for computer networks that have to communicate with each other, relying in individual system clocks can cause untold problems:

All clocks drift, and computer clocks are no different and problems occur when two machines are drifting at different rates as the time does not match up. This poses a conundrum for a computer as it is unsure of which time to believe and time critical events can fail to occur and even simple tasks like sending an email can cause time confusion on a network.

For these reasons, time servers are commonly used to receive the time from an external source and distribute it around the network. Most of these devices use the protocol NTP (Network Time Protocol) which is designed to provide a method of synchronising time on a network.

However, time servers are only as good as the time source that they rely on and when there is a problem with that source, synchronisation will fail and the problems mentioned above can occur.

The most common cause for time server failure or inaccuracy is the reliance on internet based sources of time. These can neither be authenticated by NTP nor guaranteed to be accurate and they can also lead to security issues with firewall intrusion and other malicious attacks.

Ensuring the NTP time server continues to get a source of highly accurate time is fairly straight forward and is all a matter of choosing an accurate, reliable and secure time source.

In most parts of the world there are two methods that can provide a secure and reliable source of time:

  • GPS time signals
  • Radio referenced time signals

GPS signals are available anywhere on the planet and are based on GPS time which is generated by atomic clocks onboard the satellites.

Radio referenced signals like MSF and WWVB are broadcast on long wave from physics laboratories like NIST and NPL.

European Rival to GPS takes a Further Step Forward

  |   By

The long awaited European rival to the USA Global Positioning System, Galileo, has taken a step forward to realisation with the delivery of the payload for first satellite.

The payload, which contains the “brains” of the Galileo satellite, includes the atomic clocks that are the basis for all global navigation satellite systems (GNSS) and provide both the positing information and the GPS time signal used by so many GPS NTP time servers for network synchronisation.

Galileo is set to not only rival the current American run GPS system, but for time synchronisation applications it is expected to operate in tandem ensuring even greater accuracy for those seeking a source of UTC time.

Galileo has undergone a lot of uncertainty since the multi-billion Euro project was first designed over a decade ago but the delivery of the first satellite’s payload to Rome, where the equipment is being finalised in preparation for launch early next year, is a real boon to the project which has often fallen into doubt.

Just like GPS, Galileo will be a fully operation navigational satellite system but will offer even greater accuracy that its aging predecessor and provide Europe with their own navigational system that isn’t owned and controlled by the US military.

As well as the positing information that will be used by motorists, pilots and other travellers, Galileo will also provide a secure and accurate source of time for the world’s computer networks and technologies to ensure synchronicity.

Currently, GPS is alone in providing this secure service, although radio transmissions in some countries provide an alternative to the GPS time server signals, although they are not as wide spread as GPS.

The first Galileo satellite is expected to reach orbit in early 2011, with the entire network planned to be operation in 2014 – although if past experiences with the project are anything to go on – you should expect at least a few delays.

Choosing a Source of Time for an NTP Synchronization

  |   By

Accurate time is essential in the modern world of internet banking, online auctions and global finance. Any computer network that is involved in global communication needs to have an accurate source of the global timescale UTC (Coordinated Universal Time) to be able to talk to other networks.

Receiving UTC is simple enough. It is available from multiple sources but some are more reliable than others:

Internet Time Sources

The internet is awash with time sources. These vary in reliability and accuracy but some trusted organisations like NIST (National Institute of Standards and Time) and Microsoft. However, there are disadvantages with internet time sources:

Reliability – The demand for internet sources of UTC often means it can be difficult to access them

Accuracy – most internet time servers are stratum 2 devices which means they rely on a source of time themselves. Often errors can occur and many sources of time can be very inaccurate.

Security – Perhaps the biggest issue with internet time sources is the risk they pose to security. To receive a time stamp from across the internet the firewall needs to have an opening to allow the signals to pass through; this can lead to malicious users taking advantage.

Radio Referenced Time Servers.

A secure method of receiving UTC time stamps is available by using a NTP time server that can receive radio signals from labs like NIST and NPL (National Physical Laboratory. Many countries have these broadcasted time signals which are highly accurate, reliable and secure.

GPS Time servers

Another source for dedicated time servers is GPS. The big advantage of a GPS NTP time server is that the time source is available everywhere on the planet with a clear view of the sky. GPS time servers are also highly accurate, reliable and just as secure as radio referenced time servers.

GPS as a Timing Reference for NTP servers

  |   By

The GPS system is familiar to most people. Many cars now have a GPS satellite navigation device in their cars but there is more to the Global Positioning System than just wayfinding.

The Global Positioning System is a constellation of over thirty satellites all spinning around the globe. The GPS satellite network has been designed so that at any point in time there is at least four satellites overhead – no matter where you are on the globe.

Onboard each GPS satellite there is a highly precise atomic clock and it is the information from this clock that is sent through the GPS transmissions which by triangulation (using the signal from multiple satellites) a satellite navigation receiver can work out your position.

But these ultra precise timing signals have another use, unbeknown to many users of GPS systems. Because the timing signals from the GPS atomic clocks are so precise, they make a good source of time for synchronising all sorts of technologies – from computer networks to traffic cameras.

To utilise the GPS timing signals, a GPS time server is often used. These devices use NTP (Network Time Protocol) to distribute the GPS timing source to all devices on the NTP network.

NTP regularly checks the time on all the systems on its network and adjusts it accordingly if it has drifted to what the original GPS timing source is.

As GPS is available anywhere on the planet it provides a really handy source of time for many technologies and applications ensuring that whatever is synchronised to the GPS timing source will remain as accurate as possible.

A single GPS NTP server can synchronize hundreds and thousands of devices including routers, PCs and other hardware ensuring the entire network is running perfectly coordinated time.

Technologies that rely on Atomic Clocks (Part 2)

  |   By

GPS is not the only technology that is dependent on atomic clocks. The high levels of accuracy that are supplied by atomic clocks are used in other crucial technologies that we take for granted everyday.

Air traffic Control Not only are all aeroplanes and airliners now equipped with GPS to enable pilots and ground staff to know their exact location but atomic clocks are also used by air traffic controllers who need precise and accurate measurements and time between planes.

Traffic Lights and Road Congestion Systems – Traffic lights are another system that relies on atomic clock timing. Accuracy and synchronization is vital for traffic light systems as small errors in synchronization could lead to fatal accidents.

Congestion cameras and other systems such as parking metres also use atomic clocks as a basis of their timekeeping as this prevents any legal issues when issuing penalty notices.

CCTV – Closed circuit television is another large scale user of atomic clocks. CCTV cameras are often used in the fight against crime but as evidence they are ineffective in a court of law unless the timing information on the CCTV camera can be proved to be accurate. Failure to do so could lead to criminals escaping prosecution because despite the identification by the camera, proof that it was at the time and date of the offence can’t be clarified without accuracy and synchronization.

Internet – Many of the applications we now entrust to the internet are only made possible thanks to atomic clocks. Online trading, internet banking and even online auction houses all need accurate and synchronized time.

Imagine taking your savings from your bank account only finding that you can withdraw them again because another computer has a slower clock or imagine bidding on an internet auction site only to have your bid rejected by a bid that came before yours because it was made on a computer with a slower clock.

Using atomic clocks as a source for time is relatively straight forward for many technologies. Radio signals and even the GPS transmissions can be used as a source of atomic clock time and for computer systems, the protocol NTP (Network Time Protocol) will ensure any sized network will be synchronized perfectly together. Dedicated NTP time servers are used throughout the world in technologies and applications that require precise time.

Technologies that rely on Atomic Clocks (Part 1)

  |   By

Atomic clocks are the most accurate timekeeping devices known to man. There accuracy is incomparable to other clocks and chronometers in that whilst even the most sophisticated electronic clock will drift by a second every week or two, the most modern atomic clocks can keep running for thousands of years and not lose even a fraction of a second.

The accuracy of an atomic clock is down to what they use as their basis for time measurement. Instead of relying on an electronic current running through a crystal like an electronic clock, an atomic clock uses the hyperfine transition of an atom in two energy states. Whilst this may sound complicated, it is just an unfaltering reverberation that ‘ticks’ over 9 billion times each second, every second.

But why such accuracy really necessary and what technologies are atomic clocks employed in?

It is by examining the technologies that utilise atomic clocks that we can see why such high levels of accuracy are required.

GPS – Satellite navigation

Satellite navigation is a huge industry now. Once just a technology for the military and aviators, GPS satellite navigation is now used by road users across the globe. However, the navigational information provided by satellite navigation systems like GPS is solely reliant on the accuracy of atomic clocks.

GPS works by triangulating several timing signals that are deployed from atomic clocks onboard the GPS satellites. By working out when the timing signal was released from the satellite the satellite navigational receiver can just how far away it is from the satellite and by using multiple signals calculate where it is in the world.

Because of these timing signals travel at the speed of light, just one second inaccuracy within the timing signals could lead to the positing information being thousands of miles out. It is testament to the accuracy of GPS atomic clocks that currently a satellite navigation receiver is accurate to within five metres.

Network Time Protocol and Computer Time Synchronization

  |   By

Ask any network administrator or IT engineer and ask them how important network time synchronization is and you’ll normally get the same answer – very.

Time is used in almost all aspects of computing for logging when events have happened. In fact timestamps are the only reference a computer can use to keep tracks of tasks it has done and those that it has yet to do.

When networks are unsynchronized the result can be a real headache for anybody tasked with debugging them. Data can be often lost, applications fail to commence, error logging is next to impossible, not to mention the security vulnerabilities that can result if there is no synchronized network time.

NTP (Network Time Protocol) is the leading time synchronisation application having been around since the 1980’s. It has been constantly developed and is used by virtually every computer network that requires accurate time.

Most operating systems have a version of NTP already installed and using it to synchronise a single computer is relatively straight forward by using the options in the clock settings or task bar.

However, by using the inbuilt NTP application or daemon on a computer will result in the device using a source of internet time as a timing reference. This is all well and good for single desk top machines but on a network a more secure solution is required.

It is vital on any computer network that there are no vulnerabilities in the firewall which can lead to attacks from malicious users. Keeping a port open to communicate with an internet timing source is one method an attacker can use to enter a network.

Fortunately there are alternatives to using the internet as a timing source. Atomic clock time signals can be received using long wave radio or GPS transmissions.

Dedicated NTP time server devices are available that make the process of time synchronisation extremely easy as the NTP servers receives the time (externally to the firewall) and can then distribute to all machines on a network – this is done securely and accurately with most networks synchronised to an NTP server working to within a few milliseconds of each other.

The Effect of Solar Flares on GPS

  |   By

Forthcoming space weather may affect GPS devices including satellite navigation and NTP GPS time servers.

Whilst many of us have had to cope with some extreme weather last winter, further storms are on their way – this time from space.

Solar flares are a regular occurrence on the surface of the sun. Whilst scientists are not completely sure what causes them we know two things about solar flares: – they are cyclical – and are related to sunspot activity.

For that last eleven years the sun’s sunspot activity – small dark depressions that appear on the surface of the sun – has been very minimal. But this eleven year cycle has come to an end and there has been a rise in sun spots at the end of last year meaning 2010 will be a bumper year for both sunspots and solar flares.

But there is no need to worry about becoming toasted by solar flares as these bursts of hot gases that flare from the sun never get far enough to reach the Earth, however, they can effect us in different ways.

Solar flares are bursts of energy and as such emit radiation and high energy particles. On earth, we are protected by these blasts of energy and radiation by the earth’s magnetic field and ionosphere, however, satellite communications are not and this can lead to trouble.

Whilst the effect of solar flare radiation is very weak, it can slow down and reflect radio waves as they travel through the ionosphere towards Earth. This interference can cause GPS satellites in particular extreme problems as they are reliant on accuracy to provide navigational information.

While the effects of solar flares are mild, it is possible GPS devices will encounter brief periods of no signal and also the problem of inaccurate signals meaning positing information may become unreliable.

This will not just affect navigation either as the GPS system is used by hundreds and thousands of computer networks as a source of reliable time.

Whilst most dedicated GPS time servers should be able to cope with periods of instability without losing precision, for worried network administrators not wanting to go into work to find their systems have crashed because of a lack of synchronisation may want to consider using a radio referenced Network time server that uses broadcast transmission such as MSF or WVBB.

Dual NTP time servers (Network Time Protocol) are also available that can receive both radio and GPS, ensuring a source of time is always constantly available.