Category: gps time server

An End to British Summer Time?

  |   By

The new UK government is to look again at the perennial debate about changing the clocks during the summer months from GMT (Greenwich Mean Time) to British Summer Time (BST).

While the move is controversial, with many in Scotland in the north of the UK, unwilling to adopt the change due to the longer dark days of winter they experience over the rest of the country – the move would help synchronise Britain with the rest of Europe.

Despite its positing in the European Union, Britain holds a different timescale to the rest of Europe. People from the UK who travel abroad have to advance their watches an hour every-time they travel to mainland Europe.

In the new proposals, daylight saving time will still continue but the standard winter time will be advanced an hour and a further advancement of an hour for the summer – know as double British Summertime – allowing the UK to have the same time as Europe.

However, despite the problems such a change would have to people; technology will not be affected by any alteration in daylight saving time.

UTC Time

Technology, such as computer networks, all use a universal time – UTC (Coordinated Universal Time). UTC is a global timescale, kept true by an international conglomeration of atomic clocks. This means whether you have a UK based computer network, or a one on the other side of the world, to the technologies – the time is the same.

Most technologies receive this time from an atomic clock source using devices known as NTP servers (after the time protocol: Network Time Protocol). NTP servers take advantage of the atomic clocks onboard GPS satellites so they can not only supply an accurate source of time but they can assure that the time source never drifts.

Other methods of getting an atomic clock source of time include using medium wave transmissions broadcast by places like the UK’s National Physical Laboratory (NPL) or the American National Institute for Standards and Time.

NTP servers ensure that no matter where you are in the world the source of time your computers and technology utilise is always Coordinated Universal Time – no matter what the time of year.



GPS Time Servers Precise Time all the Time

  |   By

Keeping computer networks accurate and synchronised can’t be emphasised highly enough. Accurate time is essential in the modern global economy as computer networks across the globe are required to constantly talk to each other.

Failing to ensure a network is accurate and precise can lead to headache after headache: transactions can fail, data can get lost, and error logging and debugging can be virtually impossible.

Atomic Clocks

Atomic clocks form the basis of the global timescale – UTC (Coordinated Universal Time). UTC is used across the globe by technology and computer networks enabling the entire commercial and technological world to communicate in synchronicity together.

But as atomic clocks are highly technical (and expensive) pieces of hardware that require a team of technicians to control – where do people get a source of such accurate time?

The answer is quite simple; atomic clock timestamps are transmitted by physics laboratories and are avlaible from a whole host of sources – kept accurate by the time software NTP (Network Time Protocol).

NTP Time Servers

The most common location for sources of atomic clock generated UTC is the internet. A whole host of online time servers are avlaible for synchronisation but these can vary in their accuracy and precision. Furthermore, using a source of internet time can create vulnerabilities in the network as the firewall has to allow these timestamps through and therefore can be utilised by viruses and malicious software.

By far the most secure and accurate method of receiving a source of atomic clock generated time is to utilise the GPS network (Global Positioning System).

GPS time servers are unique in that as long as there is a clear view of the sky they can receive a source of time – anywhere on the globe, 24 hours-a-day, 365 days a year.

They are also highly accurate with a single GPS NTP time server able to synchronise entire networks to just a few milliseconds of UTC.

How accurate does NTP Synchronisation need to be?

  |   By

Computers advance at a remarkable rate; in effect computers double in power, speed and memory every five years, and with such advances in technology many people assume that the clocks that control the time of a computer are just as powerful.

However, nothing could be further from the truth; most system clocks are crude crystal oscillators that are prone to drift, which is why computer time synchronisation is so important.

In modern computing, nearly every aspect of managing a network is reliant on time. Timestamps are the only frame of reference a computer has to ascertain if an event has occurred, is due to, or shouldn’t occur.

From debugging, to conducting time sensitive transactions over the internet, accurate time is essential. But how accurate does it have to be?

Coordinated Universal Time

Coordinated Universal Time (UTC) is a global timescale derived from atomic clocks. UTC was developed to allow technological devices, such as computer networks, to communicate with a single time.

Most computer networks use time servers governed by NTP (Network Time Protocol) to distribute UTC across the network. For most applications, accuracy to within a few hundred milliseconds is sufficient – but achieving this accuracy is where the difficulty lies.

Getting an accurate source of time

There are several options for synchronizing a network to UTC. Firstly, there is the internet. The internet is awash with time servers that proclaim to supply an accurate source of UTC. However, surveys of these online sources of time indicate that many of them are wholly inaccurate being seconds, minutes and even days out.

And even the most accurate and respected sources from NIST (National Institute of Standards and Time) and Microsoft, can vary depending on the distance your network is away.

Dedicated Time servers

Dedicated NTP time servers use a more direct approach to achieve accurate synchronisation. Using atomic clocks, either from the GPS satellite network or from physics laboratories (like NIST and the UKs NPL); the time is beamed directly to the NTP time server that is connected to the network.

Because dedicated devices like this receive the time directly from atomic clocks they are incredibly accurate, enabling the entire network to be synchronised to within just a few milliseconds of NTP.

Solar Flares and the Vulnerability of GPS

  |   By

Whilst GPS is commonly associated with satellite navigation and wayfinding, many technologies and computer networks rely on the GPS satellite system for a source of accurate time.

GPS time servers utilise the onboard atomic clocks of the global positing satellites and use this stable and accurate time source as a basis for their NTP synchronisation (Network Time Protocol)

GPS has become the preferred source of atomic clock time for many network operators. There are other methods where UTC (Coordinated Universal Time) can be used; radio signals and across the internet to name but two sources, but none is as secure or readily available as GPS.

Unlike radio signals, GPS is available everywhere on the planet, is never down for scheduled maintenance and is not commonly vulnerable to interference. It also doesn’t have any security implications like connecting across an internet firewall to an online time server can.

However, this doesn’t mean GPS is completely invulnerable as recent news reports have suggested.
It has been recently reported that a sunspot (sunspot 1092) the size of the Earth has flared up and a massive coronal ejection (solar flare), described in the press as a “solar tsunami” which was suggested to be large enough to satellites and wreck power and communications grids.

Solar activity, such as sunspots and solar flares (ejected hot plumes of plasma and radiation from the sun), have long been known to be able to damage and even disable satellites.

GPS is particularly vulnerable because of the high orbits of geostationary satellites (some 22,000 miles up) this leaves them unprotected by the earth’s magnetic field.

However, following the recent solar activity there has been no reported damage to the GPS system but as so many people rely on satellite navigation and GPS time for NTP servers could a future solar storm lead to havoc on Earth?

Well the short answer is yes; GPS satellites have been in orbit for several decades and while redundant satellites were introduced into the system many have been used up due to previous failures and it would only take a couple of disabled satellite to cause real problems for the network.

Fortunately, help is at hand as the Europeans, Russians and Chinese are all working on their own GPS equivalents which should work hand-in-hand with the American GPS network allowing GPS receivers to pick and choose from all four GNSS networks (Global Navigational Satellite Systems) ensuring that even if a really violent solar storm hits in the future there will be more than enough geo stationary satellites to ensure no loss of signal.

Using Internet Time for Computer Synchronization

  |   By

Ensuring your network is synchronized is a vital part of modern computing. Failure to do so, and having different machines telling different times is a recipe for disaster and can cause untold problems, not to mention making it almost impossible to debug or log errors.

And it is not just your own network you need to synchronize to either. With so many networks talking to each other, it is important that all networks synchronize to the same time-scale.

UTC (Coordinated Universal Time) is just such a global timescale. It is controlled by an international constellation of atomic clocks and enables computers all over the world to talk to each other in perfect synchronicity.

But how do you sync to UTC?

The internet is awash with sources of internet time. Most modern operating systems, especially in the Windows flavour, are set up to do this automatically (just by clicking the time/date tab on the clock menu). The computer will then regularly check the time server (usually at Microsoft or NIST, although others can be used) and adjust the computer to ensure its time matches.

Most internet time servers are known as stratum 2 devices. This means they take the time from another device but where does that get the time from?

NTP time servers

The answer is that somewhere on the stratum tree there will be a stratum 1 device. This will be a time server that receives the time direct from an atomic clock source. Often this is by GPS but there are radio referenced alternatives in several countries. These stratum 1 NTP (Network Time Protocol) time servers then provide the stratum 2 devices with the correct time – and its these devices we get our internet time from.

Drawbacks to Internet time

There are several drawbacks to relying on the Internet for time synchronisation. Accuracy is one consideration. Normally, a stratum 2 device will provide ample enough precision for most networks; however, for some users who require high levels of accuracy or deal in a lot of time sensitive transactions a stratum 2 time server may not be accurate enough.

Another problem with internet time servers is that they require an open port in the firewall. Keeping the NTP access on UDP port 123 open all the time could lead to security issues, especially as internet time sources can’t be authenticated or guaranteed.

Using a Stratum 1 NTP Time server

Stratum 1 NTP time servers are easily installed on most networks. Not only will they provide a higher accurate source of time but as they receive the time externally (from GPS or radio) they are highly secure and can’t be hijacked by malicious users or viral software.

MSF Downtime No Signal 26th and 27th July

  |   By

The UK’s time and frequency signal MSF, provided by the National Physical Laboratory out of Cumbria, will be down for essential maintenance on 26 and 27 July.

The unplanned downtime is to allow essential maintenance to be carried out in safety. The MSF transmitter will stop broadcasting the MSF signal on 26 and 27 July between 08.00 and 20.00 (BST – 07:00 GMT/UTC) although it is possible the maintenance may be finished ahead of schedule in which case the signal will be turned on earlier.

Future maintenance is scheduled for the following times when the signal will also be turned off:

• 9 September 2010 from 10:00 BST to 14:00 BST
• 9 December 2010 from 10:00 UTC to 14:00 UTC
• 10 March 2011 from 10:00 UTC to 14:00 UTC

Problems for Time Synchronisation

Generally, most NTP time servers should be able to maintain a stable time during these brief outages and users of MSF time synchronisation devices should not experience any difficulties with the lack of MSF signal.

However, those users who require high levels of accuracy and reliability and find the MSF outages affect them should perhaps look to a GPS NTP server.

GPS time servers receive their time signals from the GPS network which is available 24 hours a day, 365 days a year and never experiences any outages.

MSF Downtime – No Signal 26/27 July

NTP Servers versus Internet Time What is the best method for Accurate Time?

  |   By

Accurate and reliable time is highly important and as networks and the internet gets faster and faster – accuracy becomes even more essential.

Computers internal clock systems are nowhere near accurate enough for many networked tasks. As simple quartz chronometers they will drift, by as a much as a second which perhaps wouldn’t be a problem if it wasn’t for the fact that all the clocks on the network may drift at different rates.

And as the world becomes more global, ensuring computer networks can talk to each other is also important meaning that synchronisation to the global timescale UTC (Coordinated Universal Time) is now a prerequisite for most networks.

Methods of Synchronisation

There are currently, only two methods for getting truly accurate and reliable time:

  • Use of an internet based time server from places like NIST (National Institute of Standards and Time) or Microsoft.
  • Use of a dedicated NTP time server – that receives external time sources such as from GPS

There are advantages and disadvantages to both types of sources – but which method is best?

Internet Time

Internet time has one great advantage – it is often free. However there are disadvantages to using an internet tie source. The first is distance. Distance across the internet can have a dramatic effect and as the internet gets quicker the distance has an even bigger effect meaning that accuracy become more tenuous.

Another disadvantage of internet time is the lack of authentication and the security risk it poses. Authentication is what the time protocol NTP (Network Time Protocol) uses to establish the true identity of a time source.

Furthermore, an internet time source can only be accessed through a network firewall so a UDP port has to be kept open providing a possible entrance for software nasties or malicious users.

NTP Time Server

NTP time servers on the other hand are dedicated devices. They retrieve a source of UTC externally to the firewall from either GPS or a long wave radio transmission. These come direct from atomic clocks (in the cased of GPS the atomic clock is onboard the satellite) and so can’t be hijacked by malicious users or viruses.

NTP servers are also far more accurate and are not impinged by distance meaning that a network can have millisecond accuracy all the time.

Time to get accurate Atomic clock time servers for computer networks

  |   By

Accurate and precise time is increasingly becoming a necessity for computer systems. From corporate networks to public service technologies such as ATMs, traffic lights or CCTV cameras – precise time is what keeps them ticking.

Inaccurate or unsynchronised time is the root cause for many technology breakdowns and failures.  For instance, failing to synchronize a traffic lights system can lead to all sorts of confusion of the lights change at the wrong time – and the consequences for systems belonging to industries such as air traffic control could be even worse.

And even a standard computer network such as those used in most offices requires accurate synchronisation to prevent errors, enable debugging and to ensure the system is secure.

Most system administrators are now aware of the importance of accurate and precise time synchronisation but getting a source of accurate time is often where many people make mistakes.

Many network administrators are aware of the time protocol NTP (Network Time Protocol) which is used to ensure accurate synchronisation between computers.

However, many administrators make the mistake of using a source of time from across the internet to distribute with NTP – a common pitfall that can have disastrous consequences.

The internet is not the best source of tine. While it is true, many online NTP servers are available as a source of atomic time or UTC (Coordinated Universal Time) but are they accurate. The truth is it is almost impossible to know. Internet time sources can be affected by the distance of the client (the network) from the time source – it also can’t be authenticated by NTP.

Even more important, internet time sources operate through the firewall which can allow the time signal to be hijacked by malicious programs.

The only secure and accurate method of synchronising a computer network or other technology system is to use an NTP server. These devices receive an external atomic clock time signal often by GPS or even by radio transmissions.

These signals are come direct from atomic clocks so are highly accurate they also can’t be hijacked as they are not connected to the internet.

Do I Really Need A NTP Server For Time Synchronisation?

  |   By

Time synchronisation is a critical aspect to modern computing, especially when computers are on a network or need to communicate with other networked machines.

Timestamps are crucial for computers to acknowledge when an event occurred and it is the only information they have to ascertain if an event has occurred. Without accurate time stamps the consequences can include:

• Loss of data
• Difficult to log errors
• Difficult to debug
• Failure to save
• Time sensitive applications may fail

Modern operating systems like Windows 7 have automatic synchronisation software already installed. W32Time has been a part of Microsoft’s different generations of operating systems for some time but in Windows 7 it is set to be automatically on (Rather than the user having to set it) – synchronising your PC straight out of the box.

With such NTP (Network Time Protocol) based synchronisation available by using internet time servers (normally Microsoft and NIST) many people may wonder if a dedicated time server is still required.

Problems with Internet Time Servers

There are several drawbacks to using this Internet time as a source of UTC (Coordinated Universal Time – the global timescale often referred to as GMT).

The first and most important drawback to internet time servers is their location through the firewall. Having to rely on a source of time across the internet means keeping the TCP port open – a crucial security weakness that can be used by malicious users or bots.

Another downside to internet time servers is their lack of guaranteed accuracy. While places like NIST (National Institute for Standards and Time) and Microsoft have reliable and accurate time servers – the accuracy can be dependent on how far away you are peering from. And many other time servers available as a source of internet time are less reliable – and as NTP can’t authenticate a time signal from across the internet – it can be difficult to assess.

Benefits of an External NTP Server

Dedicated external NTP servers are far more secure. They receive their tie from GPS satellites of Long Wave transmissions so the signals can’t be intercepted by computer hackers or malicious software. Also, NTP can authenticate the signals ensuring you know where they are coming from and how accurate they are.

With time being so important on modern networked computers, taking a risk with internet time may cost a lot more than any minor investment in a dedicated NTP time server.

Competition for GPS Ever Closer

  |   By

Written by Richard N Williams for Galleon Systems

Since its release to the civilian population the Global Positioning System (GPS) has greatly improved and enhanced our world. From satellite navigation to the precise time used by NTP servers (Network Time Protocol) and much or our modern world’s technology.

And GPS has for several years been the only Global Navigation Satellite Systems (GNSS) and is used the world over, however, times are now changing.

There are now three other GNSS systems on the horizon that will not only act as competition for GPS but will also increase its precision and accuracy.

Glonass is a Russian GNSS system that was developed during the Cold War. However, after the fall of the Soviet Union the system fell into disrepair but it has finally been revamped and is now back up and running.

The Glonass system is now being used as a navigational aid by Russian airlines and their emergency services with in-car GNSS receivers also being rolled out for the general population to use. And the Glonass system is also allowing time synchronisation using NTP time servers as it uses the same atomic clock technology as GPS.

And Glonass is not the only competition for GPS either. The European Galileo system is on track with the first satellites expected to be launched at the end of 2010 and the Chinese Compass system is also expected to be online soon which will make four fully operational GNSS systems orbiting above Earth’s orbit.

And this is good news for those interested in ultra high time synchronisation as the systems should all be interoperable meaning anyone looking to GNSS satellites can use multiple systems to ensure even greater accuracy.

It is expected that interoperable GNSS NTP time servers will soon be available to make use of these new technologies.