Time to get accurate Atomic clock time servers for computer networks

  |   By

Accurate and precise time is increasingly becoming a necessity for computer systems. From corporate networks to public service technologies such as ATMs, traffic lights or CCTV cameras – precise time is what keeps them ticking.

Inaccurate or unsynchronised time is the root cause for many technology breakdowns and failures.  For instance, failing to synchronize a traffic lights system can lead to all sorts of confusion of the lights change at the wrong time – and the consequences for systems belonging to industries such as air traffic control could be even worse.

And even a standard computer network such as those used in most offices requires accurate synchronisation to prevent errors, enable debugging and to ensure the system is secure.

Most system administrators are now aware of the importance of accurate and precise time synchronisation but getting a source of accurate time is often where many people make mistakes.

Many network administrators are aware of the time protocol NTP (Network Time Protocol) which is used to ensure accurate synchronisation between computers.

However, many administrators make the mistake of using a source of time from across the internet to distribute with NTP – a common pitfall that can have disastrous consequences.

The internet is not the best source of tine. While it is true, many online NTP servers are available as a source of atomic time or UTC (Coordinated Universal Time) but are they accurate. The truth is it is almost impossible to know. Internet time sources can be affected by the distance of the client (the network) from the time source – it also can’t be authenticated by NTP.

Even more important, internet time sources operate through the firewall which can allow the time signal to be hijacked by malicious programs.

The only secure and accurate method of synchronising a computer network or other technology system is to use an NTP server. These devices receive an external atomic clock time signal often by GPS or even by radio transmissions.

These signals are come direct from atomic clocks so are highly accurate they also can’t be hijacked as they are not connected to the internet.

Ensure Accurate Time with an Atomic Wall Clock

  |   By

Written By Richard Williams for Galleon Systems

Accuracy in timekeeping is forever becoming more important in the modern global economy. Industries and business around the globe are now often communicating with each despite the time zone differences.

There was a time when a few minutes here or there rarely mattered but now, knowing exactly what time it is has become more and more important as conference calls and over-the-internet webinars are often scheduled as part of regular business.

Global Timescale

Fortunately, to prevent the headache of working out all the different time-zones you may have to deal with, there is a global timescale that is now adopted by the global community. UTC (Coordinated Universal Time) is an atomic clock controlled time used globally and kept precise and accurate by physics laboratories around the world.

UTC enables accurate communication and forms and is used by many high end technologies to ensure accuracy such as the network time server (NTP server – Network Time Protocol). Often these devices receive the UTC time directly from atomic clocks thanks to radio broadcasts from people like NIST (USA’s National Institute for Standards and Time) and NPL (UK’s National Physical Laboratory)

Atomic Wall Clocks

And when it comes to people telling the time, these same radio signals can also be utilised by an atomic wall clock. Atomic wall clocks, despite what the name suggests, are not atomic clocks. In essence they are comprised of a standard clock device and a radio antenna and receive. The atomic clocks signals broadcast by the physics laboratories can be received and the clock regularly adjusts itself to ensure that the clock is accurate to UTC to the second.

The Worlds Atomic Clock Timekeepers

  |   By

When you set your watch to perhaps the speaking clock or the time on the internet, have you ever wondered who it is that sets those clocks and checks that they are accurate?

There is no single master clock used for the world’s timing but there are a constellation of clocks that are used as a basis for a universal timing system known as UTC (Coordinated Universal Time).

UTC enables all the world’s computer networks and other technology to talk to each other in perfect synchronicity which is vital in the modern world of internet trading and global communication.

But as mentioned controlling UTC is not down to one master clock, instead, a serious of highly precise atomic clocks based in different countries all work together to produce a timing source that is based on the time told by them all.

These UTC timekeepers include such notable organisations as the USA’s National Institute of Standards and Time (NIST) and the UK’s National Physical Laboratory (NPL) amongst others.

These organisations don’t just help ensure UTC is as accurate as possible but they also provide a source of UTC time available to the world’s computer networks and technologies.

To receive the time from these organisations, a NTP time server (Network Time Server) is required. These devices receive the broadcasts from places like NIST and NPL via long wave radio transmissions. The NTP server then distributes the timing signal across a network, adjusting individual system clocks to ensure that they are as accurate to UTC as possible.

A single dedicated NTP server can synchronize a computer network of hundreds and even thousands of machines and the accuracy of a network relying in UTC time from the broadcasts by NIST and NPL will also be highly precise.

The NIST timing signal is known as WWVB and is broadcast from Boulder Colorado in the heart of the USA whilst the UK’s NPL signal is broadcast in Cumbria in the North of England and is known as MSF – other countries have similar systems including the DSF signal broadcast out of Frankfurt, Germany.

A Guide to Network Time Protocol

  |   By

NTP (Network Time Protocol) is perhaps the oldest and most commonly used protocol employed by computers and yet it is probably the least understood.

NTP is used by nearly all computers, networks and other devices that are involved in communicating across the internet or internal networks. It was developed in the very earliest stages of the internet when it became evident that some method of ensuring accuracy over distance was required.

The protocol works by selecting a single time source, of which NTP has the ability to establish the accuracy and reliability of, which it then distributes around every device on the NTP network.

Each device is regularly checked against this reference clock and adjusted if any drift is noticed. A version of NTP is now deployed with virtually every operating system allowing any machine to be synchronized to a single time source.

Obviously if every network in the world selected a different time source as its reference, the reason for of all this synchronization would be lost.

Fortunately, a global timescale based on an international consortium of atomic clocks has been developed to provide a single time source for the purposes of global synchronisation.

UTC (Coordinated Universal Time) is used by computer networks worldwide as a time reference which means any device that is synchronised to UTC with NTP will in effect be synchronised with every network that uses UTC as its base time.

There are many different methods that NTP can access UTC time. The internet is a common location although this does provide security and firewall issues. A more secure (and accurate) method is to use a dedicated NTP time server that takes the time from external sources such as the GPS network (GPS works by broadcasting an atomic clock timestamp that is easily converted to UTC by a NTP server).

With NTP, a dedicated time server and access to UTC an entire network can be synchronised to within a few milliseconds of the universal time providing a secure and accurate network that can operate in complete synchronicity with other networks across the globe.

Synchronizing a PC to an Atomic Clock

  |   By

Atomic clocks are without doubt the most accurate time pieces on the face of the planet. In fact the accuracy of an atomic clock in incomparable to any other chronometer, watch or clock.

While an atomic clock will not lose even a second in time in thousands upon thousands of years, you’re average digital watch will perhaps lose a second in just a few days which after a few weeks or months will mean your watch is running slow or fast by several minutes.

The same can also be said for the system clock that controls your computer the only difference is that computers rely even more heavily on time than we ourselves do.

Nearly everything a computer does is reliant on timestamps, from saving work to performing applications, debugging and even emails are all reliant on timestamps which can be a problem if the clock on your computer is running too fast or slow as errors can quite often occur, especially if you are communicating with another computer or device.

Fortunately, most PCs are easily synchronized to an atomic clock meaning they can be accurate as these powerful time keeping devices so any tasks performed by your PC can be in perfect synchronicity with whatever device you are communicating with.

In most PC operating systems an inbuilt protocol (NTP) allows the PC to communicate with a time server that is connected to an atomic clock. In most versions of Windows this is accessed through the date and time control setting (double clicking the clock in the bottom right).

However, for business machines or networks that require secure and accurate time synchronization, online time servers are just not secure or accurate enough to ensure your network is not vulnerable to security flaws.

However, NTP time servers that receive the time direct from atomic clocks are available that can synchronize entire networks. These devices receive a broadcasted timestamp distributed by either national physics laboratories or via the GPS satellite network.

NTP servers enable entire networks to all have exactly synchronized time which is as accurate and secure as is humanly possible.

Network Time Protocol And Network Time Synchronization

  |   By

Synchronization of computer networks is something that many administrators take for granted. Dedicated network time servers can receive a time source and distribute it amongst a network, accurately, securely and precisely.

However, accurate time synchronization is only made possible thanks the time protocol NTP – Network Time Protocol.

NTP was developed when the internet was still in its infancy and Professor David Mills and his team from Delaware University were trying to synchronise the time on a network of a few machines. They developed the very earliest rendition of NTP which has continued to be developed to this very day, nearly thirty years after its first inception.

NTP was not then, and is not now, the only time synchronisation software, there are other applications and protocol that do a similar task but NTP is the most widely used (by far with over 98% of time synchronisation applications using it). It is also packaged with most modern operating systems with a version of NTP (usually SNTP – a simplified version) installed on the latest Windows 7 operating system.

NTP has played an important part in creating the internet we know and love today. Many online applications and tasks would not be possible without accurate time synchronization and NTP.

Online trading, internet auctions, banking and debugging of networks all rely on accurate time synchronisation. Even sending an email requires time synchronisation with email server – otherwise computers would not be able to handle emails coming from unsynchronised machines as they may arrive before they were sent.

NTP is a free software protocol and is available online from NTP.org However, most computer networks that require secure and accurate time mostly use dedicated NTP servers that operate external to the network and firewall obtaining the time from atomic clock signals ensuring millisecond accuracy with the world’s global timescale UTC (Coordinated Universal Time).

How to Synchronise a Computer Network using the Time Protocol (NTP)

  |   By

Synchronisation of modern computer networks is vitally important for a multitude of reasons, and thanks to the time protocol NTP (Network Time Protocol) this is relatively straightforward.

NTP is an algorithmic protocol that analyses the time on different computers and compares it to a single time reference and adjusts each clock for drift to ensure synchronisation with the time source. NTP is so capable at this task that a network synchronised using the protocol can realistically obtain millisecond accuracy.

Choosing the time source

When it comes to establishing a time reference there really is no alternative than to find a source of UTC (Coordinated Universal Time). UTC is the global timescale, used throughout the world as a single timescale by computer networks. UTC is kept accurate by a constellation of atomic clocks throughout the world.

Synchronising to UTC

The most basic method of receiving a UTC Time source is to use a stratum 2 internet time server. These are deemed stratum 2 as they distribute the time after first receiving it from a NTP server (stratum 1) that is connected to an atomic clock (stratum 0). Unfortunately this is not the most accurate method of receiving UTC because of the distance the data has to travel from host to the client .

There are also security issues involved in using an internet stratum 2 time source in that the firewall UDP port 123 has to be left open to receive the time code but this firewall opening can, and has been, exploited by malicious users.

Dedicated NTP Servers

Dedicated NTP time servers, often referred to as network time servers, are the most accurate and secure method of synchronising a computer network. They operate externally to the network so there are no firewall issues. These stratum 1 devices receive the UTC time direct from an atomic clock source by either long wave radio transmissions or the GPS network (Global Positioning System). Whilst this does require an antenna, which in the case of GPS has to be placed on a rooftop, the time server itself will automatically synchronise hundreds and indeed thousands of different devices on the network.

Did you Remember the Leap Second this Year?

  |   By

When you counted down on New Year’s Eve to mark the beginning of the next year did you start at 10 or 11? Most revelers would have counted down from ten but they would have been premature this year as there was an extra second added to last year – the leap second.

Leap seconds are normally inserted once or twice a year (normally on New Year’s Eve and in June) to ensure the global timescale UTC (Coordinated Universal Time) coincides with the astronomical day.

Leap seconds have been used since UTC was first implemented and they are a direct result of our accuracy in timekeeping. The problem is that modern atomic clocks are far more accurate timekeeping devices than the earth itself. It was noticed when atomic clocks were first developed that the length of a day, once thought to be exactly 24 hours, varied.

The variations are caused by the Earth’s rotation which is affected by the moons gravity and tidal forces of the Earth, all of which minutely slow down the earth’s rotation.

This rotational slowing, while only minuscule, if it is not checked then the UTC day would soon drift into the astronomical night (albeit in several thousands of years).

The decision on whether a Leap Second is needed is the remit of the International Earth Rotation Service (IERS), however, Leap Seconds are not popular with everybody and they can cause potential problems when they are introduced.

UTC is used by NTP time servers (Network Time Protocol) as a time reference to synchronise computer networks and other technology and the disruption Leap seconds can cause is seen as not worth the hassle.

However, others, such as astronomers, say that failing to keep UTC in line with the astronomical day would make studying of the heavens nearly impossible.

The last leap second inserted before this one was in 2005 but there have been a total of 23 seconds added to UTC since 1972.

Rubidium Oscillators Additional Precision for NTP Serve (Part 2)

  |   By

Continued…

However, there are some occasions when a time server can lose connection with the atomic clock and not receive the time code for a prolonged period of time. Sometimes this may be because of downtime by the atomic clock controllers for maintenance or that nearby interference is blocking the transmission.

Obviously the longer the signal is down the more potential drift may occur on the network as the crystal oscillator in the NTP server is the only thing keeping time. For most applications this should never be a problem as the most prolonged period of downtime is not normally more than three or four hours and the NTP server would not have drifted by much in that time and the occurrence of this downtime is quite rare (maybe once or twice a year).

However, for some ultra precise high end applications rubidium crystal oscillators are beginning to be used as they don’t drift as much as quartz. Rubidium (often used in atomic clocks themselves instead of caesium) is far more accurate an oscillator than quartz and provides better accuracy for when there is no signal to a NTP time server allowing the network to maintain a more accurate time.

Rubidium itself is an alkali metal, similar in properties to potassium. It is very slightly radioactive although poses no risk to human health (and is often used in medicine imaging by injecting it into a patient). It has a half life of 49 billion years (the time it takes to decay by half – in comparison some of the most lethal radioactive materials have half-lives of under a second).

The only real danger posed by rubidium is that it reacts rather violently to water and can cause fire

Dealing with Time across the Globe

  |   By

No matter where we are in the world we all need to know the time at some point in the day but while each day lasts for the same amount of time no matter where you are on Earth the same timescale is not used globally.

The impracticality of Australians having to wake up at 17.00 or those in the US having to start work at 14.00 would rule out suing a single timescale, although the idea was discussed when the Greenwich was named the official prime meridian (where the dateline officially is) for the world some 125 years ago.

While the idea of a global timescale was rejected for the above reasons, it was later decided that 24 longitudinal lines would split the world up into different timezones. These would emanate from GMT around with those on the opposite side of the planet being +12 hours.

However, by the 1970’s a growth in global communications meant that a universal timescale was finally adopted and is still in much use today despite many people having never heard of it.

UTC, Coordinated Universal Time, is based on GMT (Greenwich Meantime) but is kept by a constellation of atomic clocks. It also accounts for variations in earth’s rotation with additional seconds known as ‘leap seconds’ added once of twice a year to counteract the slowing of the Earth’s spin caused by gravitational and tidal forces.

While most people have never heard of UTC or use it directly its influence on our lives in undeniable with computer networks all synchronised to UTC via NTP time servers (Network Time Protocol).

Without this synchronisation to a single timescale many of the technologies and applications we take for granted today would be impossible. Everything from global trading on stocks and shares to internet shopping, email and social networking are only made possible thanks to UTC and the NTP time server.