Category: timing source

GPS Atomic Clock Time Signals

  |   By

It seems that nearly every car dashboard has a GPS receiver perched on the top. They have become incredibly popular as a navigational tool with many people relying on them solely to work their way around the road networks.

The Global Positioning System has been around for quite a few years now but was originally designed and built for US military applications but was extended for civilian use following an airline disaster.

Whilst it is incredibly useful and convenient a tool, the GPS systems is relatively simple in its operation. The navigation works using a constellation of 30 or so satellites (there are quite a few more that are orbiting but no longer operational).

The signals sent from the satellites contain three pieces of information that are received by the sat nav devices in our cars.

That information includes:

* The time the message was sent

* The orbital position of the satellite (known as the ephemeris)

* The general system health and orbits of the other GPS satellites (known as the almanac)

The way the navigational information is worked out is by using the information from four satellites. The time the signals left the each of the satellites is recorded by the sat nav receiver and the distance from each satellite is then worked out using this information. By using the information from four satellites it possible to work out exactly where the satellite receiver is, this process is known as triangulation.

However, working out exactly where you are in the world does rely on complete accuracy in the time signals that are broadcast by the satellites. As signals such as the GPS travel at the speed of light (approximately 300,000 km a second through a vacuum) even a one second inaccuracy could see positioning information out by 300 kilometres! Currently the GPS system is accurate to five metres which demonstrates just how accurate the timing information broadcast by the satellites is.

This high level of accuracy is possible because each GPS satellite contains atomic clocks. Atomic clocks are incredibly accurate relying on the unwavering oscillations of atoms to keep time – in fact each GPS satellite will run for over a million years before it will drift by as much as a second (compared to the average electronic watch which will drift by a second in a week or two)

Because of this high level of accuracy the atomic clocks on board GPS satellites can be used as a source of accurate time for the synchronization of computer networks and other devices that require synchronization.

Receiving this time signal requires the use of a NTP GPS server that will synchronize with the satellite and distribute the time to all devices on a network.

Why Bother Using a NTP Time Server?

  |   By

Keeping computers synchronized on a network is vitally important, especially if the network in question deals with time sensitive transactions. And failing to keep a network synchronized can cause havoc leading to errors, vulnerabilities and endless problems with debugging.

However with the amount of online time servers available from reputable places such as NIST or Microsoft it is often queried as to why computer networks need to be synchronised to an external NTP time server.

These dedicated NTP devices are often seen as an unnecessary expense and many network administrators simply forgo them and connect to an online time server, after-all, it does the same job doesn’t it?

Actually there are two major reasons why NTP time servers are not only important but essential for most computer networks and to overlook them could be costly in many ways.

Let me explain. The first reason why an external NTP server is important is accuracy. It’s not that internet time sources are generally inaccurate (although many are) but there is the question of distance the time reference has to travel. Furthermore, in times when the connection is lost -whether it’s because of a local connection fault or the time server itself goes down – the network will start to drift until the connection is restored.

Secondly and perhaps most important is the security issues involved in using an Internet time source. The main problem is that if your connection to a time server through the then a open port (UDP 123 fro NTP requests) has to be left open, And as with any open port that can used as a gateway for malicious software and users.

The reason dedicated NTP time servers are essential for computer networks is that they work completely independently and external to the network’s firewall. Instead of accessing a time source across the Internet they use either GPS or radio transmissions to get the time. And in doing so they can provide accurate time all the time without fear of losing a connection or allowing a nasty Trojan through the firewall.

When Time is Money Accuracy Matters

  |   By

We live in a fast paced world where time matters. In some industries even a second can make all the difference. Millions of dollars are exchanged hands in the stock exchange each second and share prices can rise or plummet.

Getting the right price at the right time is essential for trading in such a fast paced money market and perfect network time synchronization is the essential to be able to make that happen.

Ensuring every machine that deals in stocks, shares and bonds has the correct time is vital if people are going to trade in the derivatives market but when traders are sat in different parts of the world how can this possibly be achieved.

Fortunately Coordinated Universal Time (UTC), a global timescale developed after the development of atomic clocks, allows the same time to govern every trader, regardless of where they are in the world.

As UTC is based on atomic clock time and is kept accurate by a constellation of these clocks, it is high reliable and accurate. And industries like the stock exchange use UTC to govern the time on their computer networks.

Computer network time synchronization is achieved in computer networks by using the NTP server (Network Time Protocol). NTP servers receive a source of UTC from an atomic clock reference. This is either from the GPS network or through specialist radio transmissions (it is available through the internet too but is not as reliable).

Once received, the NTP server distributes the highly accurate time throughout the network, continually checking each device and workstation to ensure the clock is as precise as possible.

These network time servers can keep entire networks of hundreds and thousands of machines in perfect synchronization – to within a few milliseconds of UTC!

Choosing a Time Source for UTC Synchronization

  |   By

Ensuring a computer network is time synchronized is vital in modern computer networks. Synchronization, not just between different machines on a network, but also each computer network that communicates with other networks needs to be synchronized with them too.

UTC (Coordinated Universal Time) is a global timescale that allows networks on other sides of the globe to be synchronized together. Synchronizing a network to UTC is relatively straightforward thanks to NTP (Network Time Protocol) the software protocol designed for this very purpose.

Most operating systems, including the latest Microsoft incarnation Windows 7, have a version of NTP (often in a simplified form known as SNTP), that allows a single time source to be used to synchronize every computer and device on a network.

Selecting a source for this time reference is the only real difficulty in synchronizing a network. There are three main locations where UTC time can accurately be received from:

Internet Time

There are many sources of internet time and the latest version of Windows (Windows 7) automatically synchronizes to Microsoft’s time server time.windows.com, so if Internet time is adequate Windows 7 users need not alter their settings. However, for computer networks where security is an issue then internet time sources can leave a system vulnerable as the time has to be received through the firewall forcing a UDP port to be left open. This can be utilised by malicious users. Furthermore, there is no authentication with an internet time source so the timecode could be hijacked before it arrives at your network.

GPS Time

Available literally everywhere on the globe, GPS provides a 24-hour, 365 days-a-year source of UTC time. Delivered externally to the firewall via the GPS satellite signal, time synchronization with GPS is accurate and secure.

Radio Transmissions

Usually broadcast by national physics laboratories such as NIST in the US and the UK’s NPL, the time signals are received via longwave and are also external to the firewall so are secure and accurate.

A dedicated NTP time server can receive both radio and GPS time signal guaranteeing accuracy and security.

Configuring a Dedicated NTP Time Server on Windows 7

  |   By

Windows 7 is the very latest operating system from Microsoft. Replacing the rather disappointing Windows Vista, Windows 7 promises to correct the flaws that made its predecessor so unpopular.

One of the changes Windows 7 makes is that it automatically synchronizes the time using the Windows Time service located at windows.time.com. Whilst this is an accurate stratum 2 time server, managed by Microsoft, it can be changed for another source of Internet time. However, even Microsoft recommend that Internet time sources should not used for computer networks as they can’t be authenticated by the time protocol NTP (Network Time protocol). Furthermore, an internet time source needs a port left open in the firewall for the time signals to make it through. Any open port in a firewall can be used by a malicious user to gain access to the network.

For a secure, authenticated and accurate method of synchronizing a Windows 7 network, then it is wise to use a dedicated network time server. Most of these time servers use the protocol NTP (Network Time Protocol) which can easily distribute a single time server throughout a network of hundreds and even thousands of machines.

Time servers plug directly into the router/switch for the network or can be installed on a single machine. Rather than rely on the Internet for a source of time and risk leaving the firewalls UDP port open, dedicated NTP time servers use either the GPS signals or long wave radio broadcasts transmitted from national physics laboratories such as the MSF signal broadcast by the UK’s NPL and the USA WWVB signal broadcast by NIST.

As these signals are external to the firewall and are able to be authenticated by NTP to establish the authority of the signals and are a more accurate and secure method of synchronizing a Windows 7 network.

Why we Synchronize the Time

  |   By

We live and work in a totally different world to the one that many of us were born into. We are now as likely to buy something from across the internet as stroll down the coal high street. And big business and commerce has changed too with the marketplace becoming truly global and the internet being the most common tool for trade.

Trading globally does provide its problems though as different timescales govern the different countries across the globe. To ensure parity a global timescale was introduced in the 1970’s knows Coordinated Universal Time (UTC). However, as e-commerce advanced so did the need to ensure accurate synchronization to UTC.

The biggest problem is that most clocks and watches, including those inbuilt into computer motherboards, are susceptible to drift. And as different machines will drift at different rates, global communication and e-commerce could be impossible. Just think of the difference a second can make in marketplaces like the stock exchange, where fortunes are won or lost, or when you purchase seat reservations online, what would happen if somebody on a computer with slower clock booked the same seat after you, the computer’s timestamps will show the person booked before you.

Other unforeseen errors can result, even in internal networks, when computers are running different times. Data can get lost, errors can be difficult to log, track down and fix and malicious users can take advantage of the time confusion.

To ensure truly global synchronization, computer networks can synchronize to an atomic clock allowing all computers on a network o remain within a few milliseconds of UTC. Compute networks use NTP servers (Network Time Protocol) to ensure accurate synchronization, most NTP servers receive the atomic clock time from either GPS satellites of radio frequencies.

The Way an Atomic Clock Works

  |   By

Atomic clocks are the most accurate chronometers we have. They are millions of times more accurate than digital clocks and can keep time for hundreds of millions of years without losing as much as a second. Their use has revolutionised the way we live and work and they have enabled technologies such as satellite navigation systems and global online commerce.

But how do they work? Strangely enough, atomic clocks work in the same way as ordinary mechanical clocks. But rather than have a coiled spring and mass or pendulum they use the oscillations of atoms. Atomic clocks are not radioactive as they do not rely on atomic decay instead they rely on the tiny vibrations at certain energy levels (oscillations) between the nucleus of an atom and the surrounding electrons.

When the atom receives microwave energy at exactly the right frequency, it changes energy state, this state is constant an unchanging and the oscillations can be measured just like the ticks of a mechanical clock. However, while mechanical clocks tick every second, atomic clocks ‘tick’ several billion times a second. In the case of caesium atoms, most commonly used in atomic clocks, they tick 9,192,631,770 per second – which is now the official definition of a second.

Atomic clocks now govern the entire global community as a universal timescale UTC (Coordinated Universal Time) based on atomic clock time has been developed to ensure synchronization. UTC atomic clock signals can be received by network time servers, often referred to as NTP Servers, that can synchronize computer networks to within a few milliseconds of UTC.

Benefits of Accurate Network Time Synchronization

  |   By

Your computer probably does hundreds and thousands of tasks a day. If that is part of a network then the number of tasks could be millions. From sending emails to saving data, and everything else your computer is tasked to do, they are all logged by the computer or server.

Computers use timestamps to logo processes and indeed, timestamps are used as the only method a computer has to indicate when and if a task or application has been conducted. Timestamps are normally a 16 or 32 bit integer (one long number) that counts back the seconds from a prime epoch – normally 01 January 1970.

So for every task you computer does it will be stamped with the number of seconds from 1970 that the transaction was conducted. These timestamps are the only piece of information a computer system has to ascertain what tasks have been completed and what tasks have yet to be instigated.

The problem with computer networks of more than one machine is that the clocks on individual devices are not accurate enough for many modern time sensitive applications. Computer clocks are prone to drift they are typically based on inexpensive crystal oscillator circuits and can often drift by over a second a day.

This may not seem much but in today’s time sensitive world a second can be a long time indeed especially when you take into account the needs of industries like the stock exchange where a second can be the difference in price of several percent or online seat reservation, where a second can make the difference between an available seat and one that is sold.

This drift is also accumulative so within only a few months the computer systems could be over a minute out of sync and this can have dramatic effects on time sensitive transactions and can result in all sorts of unexpected problems from emails not arriving as a computer thinks they have arrived before they have been sent to data not being backed up or lost completely.

A NTP time server or network time server are increasingly becoming crucial pieces of equipment for the modern computer network. They receive an accurate source of time from an atomic clock and distribute it to all devices on the network. As atomic clocks are incredibly accurate (they won’t drift by a second even in a 100,000 years) and the protocol NTP (Network Time Protocol) continually checks the devices time against the master atomic clock time – it means the computer network will be able to run perfectly synchronised with each device within a few milliseconds of the atomic clock.

Life Without the Atomic Clock

  |   By

When we consider the most important inventions of the last 100 years, very few people will think of an atomic clock. In fact, if you ask somebody to come up with a top ten of inventions and innovations its doubtful if the atomic clock would figure at all.

Its probably not hard to imagine what people think of as the most life-changing inventions: the Internet, mobile phones, satellite navigation systems, media players etc.

However, nearly all theses technologies rely on accurate and precise time and they would not function without it. The atomic clocks lies at the heart of many of the modern innovations, technologies and applications associated with them.

Let’s take the Internet as an example. The Internet is, in its simplest form, a global network of computers, and this network spans time zones and countries. Now consider some of the things we use the Internet for: online auctions, Internet banking or seat reservation for example. These transactions could not be possible with precise and accurate time and synchronisation.

Imagine booking a seat on an airline at 10am and then another customer tries to book the same seat after you on a computer with a slower clock. The computer only has the time to go on so will consider the person who booked after you to have been the first customer because the clock says so! This is the reason any Internet network that requires time sensitive transactions is connected to a NTP server to receive and distribute an atomic clock time signal.

And for other technologies the atomic clock is even more crucial. Satellite navigation (GPS) is a prime example. GPS (Global Positioning System) works by triangulating atomic clock signals from satellites. Because of the high velocity of radio waves an inaccuracy of 1 second could see a sat-nav device out by 100,000 km.

Other technologies too from mobile phone networks to air traffic control systems are completely reliable on atomic clocks demonstrating how underrated this technology is.

Keeping Your Network Secure A Beginners Guide

  |   By

Network security is vitally important for most business systems. Whilst email viruses and denial-of-service attacks (DoS attack) may cause us headaches on our home systems, for businesses, these sorts of attacks can cripple a network for days – costing businesses hundreds of millions each year in lost revenue.

Keeping a network secure to prevent this type of malicious attack is usually of paramount importance for network administrators, and while most invest heavily in some forms of security measures there is often vulnerabilities inadvertently left exposed.

Firewalls are the best place to begin when you are trying to develop a secure network. A firewall can be implemented in either hardware or software, or most commonly a combination of both. Firewalls are used to prevent unauthorized users from accessing private networks connected to the Internet, especially local intranets. All traffic entering or leaving the intranet pass through the firewall, which examines each message and blocks those that do not meet the specified criteria.

Anti-virus software works in two ways. Firstly it acts similarly to a firewall by blocking anything that is identified in its database as possibly malicious (viruses, Trojans, spyware etc). Secondly Anti-virus software is used to detect, and remove existing malware on a network or workstation.

One of the most over-looked aspects of network security is time synchronization. Network administrators either fail to realise the importance of synchronization between all devices on a network. Failing to synchronize a network is often a common security issue. Not only can malicious users take advantage of computers running at different times but if a network is struck by an attack, identifying and rectifying the problem can be near impossible if every device is running on a different time.

Even when a network administrator is aware of the importance of time synchronization they often make a common security mistake when attempting to synchronize their network. Instead of investing in a dedicated time server that receives a secure source of UTC (Coordinated Universal Time) externally from their network using atomic clock sources like GPS, some network administrators opt to use a shortcut and use a source of Internet time.

There are two major security issues in using the Internet as a time server. Firstly, to allow the time code through the network a UDP port (123) has to be left open in the firewall. This can be taken advantage of by malicious users who can use this open port as an entrance to the network. Secondly, the inbuilt security measure used by the time protocol NTP, known as authentication, doesn’t work across the Internet which means that NTP has no guarantee the time signal is coming from where it is supposed to.

To ensure your network is secure isn’t it time you invested in an external dedicated NTP time server?