Category: Time Synchronisation

Leap Second Argument Rumbles On

  |   By

The argument about the use of the Leap Second continues to rumble on with astronomers again calling for the abolition of this chronological ‘fudge.’

Galleon's NTS 6001 GPS

The Leap Second is added to Coordinated Universal Time to ensure the global time, coincides with the movement of the Earth. The problems occur because modern atomic clocks are far more precise than the rotation of the planet, which varies minutely in the length of a day, and is gradually slowing down, albeit minutely.

Because of the differences in time of the Earth’s spin and the true time told by atomic clocks, occasional seconds need adding to the global timescale UTC—Leap Seconds. However, for astronomers, leap seconds are a nuisance as they need to keep track of both the Earth’s spin—astronomical time—to keep their telescopes fixed on studied objects, and UTC, which they need as atomic clock source to work out the true astronomical time.

Next year, however, a group of astronomical scientists and engineers, plan to draw attention to the forced nature of Leap Seconds at the World Radiocommunication Conference. They say that as the drift caused by not including leap seconds would take such a long time—probably over a millennia, to have any visible effect on the day, with noon gradually shifting to afternoon, there is little need for Leap Seconds.

Whether Leap Seconds remain or not, getting an accurate source of UTC time is essential for many modern technologies. With a global economy and so much trade conducted online, over continents, ensuring a single time source prevents the problems different time-zones could cause.

Making sure everybody’s clock reads the same time is also important and with many technologies millisecond accuracy to UTC is vital—such as air traffic control and international stock markets.

NTP time servers such as Galleon’s NTS 6001 GPS, which can provide millisecond accuracy using the highly precise and secure GPS signal, enable technologies and computer networks to function in perfect synchronicity to UTC, securely and without error.

Summer Solstice The Longest Day

  |   By

June 21 marks the summer solstice for 2011. The summer solstice is when the Earth’s axis is most inclined to the sun, providing the most amount of sunshine for any day of the year. Often known as Midsummer’s day, marking the exact middle of the summer, periods of daylight get shorter following the solstice.

For the ancients, the summer solstice was an important event. Knowing when the shortest and longest days of the year were important to enable early agricultural civilisations to establish when to plant and harvest crops.

Indeed, the ancient monument of Stonehenge, in Salisbury, Great Britain, is thought to have been erected to calculate such events, and is still a major tourist attraction during the solstice when people travel from all over the country to celebrate the event at the ancient site.

Stonehenge is, therefore, one of the oldest forms of timekeeping on Earth, dating back to 3100BC. While nobody knows exactly how the monument was built, the giant stones were thought to have been transported from miles away—a mammoth task considering the wheel hadn’t even been invented back then.

The building of Stonehenge shows that timekeeping was as important to the ancients as it is to us today. The need for acknowledging when the solstice occurred is perhaps the earliest example of synchronisation.

Stonehenge probably used the setting and rising of the sun to tell the time. Sundials also used the sun to tell the time way before the invention of clocks, but we have come a long way from using such primitive methods in our timekeeping now.

Mechanical clocks came first, and then electronic clocks which were many times more accurate; however, when atomic clocks were developed in the 1950’s, timekeeping became so accurate that even the Earth’s rotation couldn’t keep up and an entirely new timescale, UTC (Coordinated Universal Time) was developed that accounted for discrepancies in the Earth’s spin by having leap seconds added.

Today, if you wish to synchronise to an atomic clock, you need to hook up to a NTP server which will receive an UTC time source from GPS or a radio signal and allow you to synchronise computer networks to maintain 100% accuracy and reliability.

Stonehenge–Ancient timekeeping

Cyber Attacks and the Importance Time Server Security

  |   By

The media is full of stories of cyber terrorism, state sponsored cyber warfare and internet sabotage. While these stories may seem like they come from a science fiction plot, but the reality is that with so much of the world now dependent on computers and the internet, cyber attacks are a real concern for governments and businesses alike.

Crippling a website, a government server or tampering with systems like air-traffic control can have catastrophic effects—so no wonder people are worried. Cyber attacks come in so many forms too. From computer viruses and trojans, that can infect a computer, disabling it or transferring data to malicious users; distributed denial of service attacks (DDoS) where networks become clogged up preventing normal use; to border gateway protocol (BGP) injections, which hijack server routines causing havoc.

As precise time is so important for many technologies, with synchronisation crucial in global communication, one vulnerability that can be exploited is the online time server.

By sabotaging a NTP server (Network Time Protocol) with BGP injections, servers that rely on them can be told it’s a completely different time than it is; this can cause chaos and result in a myriad of problems as computers rely solely on time to establish if an action has or hasn’t taken place.

Securing a time source, therefore, is essential for internet security and for this reason, dedicated NTP time servers that operate externally to the internet are crucial.

Receiving time from the GPS network, or radio transmissions from NIST (National Institute for Standards and Time) or the European physical laboratories, these NTP servers can’t be tampered with by external forces, and ensure that the network’s time will always accurate.

All essential networks, from stock exchanges to air traffic controllers, utilise external NTP servers for these security reasons; however, despite the risks, many businesses still receive their time code from the internet, leaving them exposed to malicious users and cyber attacks.

Dedicated GPS Time Server--immune to cyber attacks

Keeping Track of Global Time

  |   By

So much business these days is conducted across borders, countries and continents. Global trade and communication is an important aspect for all sorts of industries, trades and businesses.

Of course, communicating across borders often means communicating across time zones too, and this poses problems for both people and computers. When those in United States start work, Europeans are half way through their day, while those in the Far East have gone to bed.

Knowing the time in several countries is, therefore, important for many people, but fortunately, many solutions exist to help.

Modern operating systems like Windows 7 have facilities that allow you to show several time zones on the computer clock, while web pages and apps such as:  https://www.worldtimebuddy.com offer an easy way to work out the different time across time zones.

Many offices use multiple analogue and digital wall clocks to provide staff with easy access to the time in important trade countries, sometimes these use atomic clock receivers to maintain perfect accuracy, but what about computers? How do they deal with different time zones?

The answer lies in the global timescale UTC (Coordinated Universal Time). UTC was developed following the invention of atomic clocks. Kept precise by a constellation of these super-accurate clocks, UTC is the same across the globe enabling computers to communicate effectively without the differences in time zones affecting functionality.

To ensure preciseness in communication, computer networks need an accurate source of UTC as system clocks are nothing more than quartz oscillators, which can drift by several seconds a day—a long time for computer communication.

A software protocol, NTP (Network Time Protocol) ensures that this time source is distributed around the network, maintaining its accuracy.

NTP servers receive the source of UTC, often from sources such as GPS or radio referenced signals broadcast by NPL in the UK (National Physical Laboratory—transits the MSF signal from Cumbria) or NIST in the USA (National Institute of Standards and Time—transmits the WWVB signal from Colorado).

With UTC and NTP time servers, computer networks across the globe can communicate precisely and error-free enabling trouble free computing and truly global communication.

NTP server

October Launch Date for Europes Version of GPS

  |   By

The launch date for the first Galileo satellites, the European version of the Global Positioning System (GPS), has been scheduled for mid October, say the European Space Agency (ESA).

Two Galileo in-orbit validation (IOV) satellites will be launched using a modified Russian Soyus rocket this October, marking a milestone in the Galileo project’s development.

Originally scheduled for August, the delayed October launch will lift off from ESA’s spaceport in French Guiana, South America, using the latest version of the Soyuz rocket—the world’s most reliable and most used rocket in history(Soyus was the rocket that propelled both Sputnik—the first orbital satellite—and Yuri Gargarin—the first man in orbit—into space).

Galileo, a joint European initiative, is set to rival the American controlled GPS, which is controlled by the United States military. With so many technologies reliant on satellite navigation and timing signals, Europe needs its own system in case the USA decides to switch off their civilian signal during times of emergency (war and terrorist attacks such as 9/11) leaving many technologies without the crucial GPS signal.

Currently GPS not only controls the words transportation syste3ms with shipping, airliners and motorists increasingly becoming reliant on it, but GPS also provides timing signals to technologies such as NTP servers, ensuring accurate and precise time.

And the Galileo system will be good for current GPS users too, as it will be interoperable and, therefore, will increase accuracy of the 30-year-old GPS network, which is in need of upgrade.

Currently, a prototype Galileo satellite, GIOVE-B, is in orbit and has been functioning perfectly for the last three years. Onboard the satellite, as with all global navigation satellite system (GNSS) including GPS, is an atomic clock, which is used to transmit a timing signal that Earth-based navigation systems can use to triangulate accurate positioning (by using multiple satellite signals).

The atomic clock aboard GIOVE-B is currently the most accurate atomic clock in orbit, and with similar technology intended for all Galileo satellite, this is the reason why the European system will be more accurate than GPS.

These atomic clock systems are also used by NTP servers, to receive an accurate and precise form of time, which many technologies are dependent on to ensure synchronicity and accuracy, including most of the world’s computer networks.

Keeping the World Synchronised A Brief History

  |   By

Global time synchronisation may seem like a modern need, we do after all live in a global economy. With the internet, global financial markets and computer networks separated by oceans and continents—keeping everybody running in synchronisation is a crucial aspect of the  modern world.

Yet, a need for global synchronicity began a lot earlier than the computer age. International standardisation of weights and measures began after the French revolution when the decimal system was introduced and a platinum rod and weight representing the metre and the kilogram were installed in the Archives de la République in Paris.

Paris eventually became the central head of the International System of Units, which was fine for weights and measures, as representatives from different countries could visit the vaults to calibrate their own base measurements; however, when it came to standardising time, with the increased use of transatlantic travel following the steamer, and then the aeroplane, things became tricky.

Back then, the only clocks were mechanical and pendulum driven. Not only would the base clock that was situated in Paris drift on a daily basis, but any traveller from the other side of the world wanting to synchronise to it, would have to visit Paris, check the time on the vault’s clock, and then carry their own clock back across the Atlantic—inevitable arriving with a clock that had drifted perhaps several minutes by the time the clock arrived back.

With the invention of the electronic clock, the aeroplane and transatlantic telephones, things became easier; however, even electronic clocks can drift several seconds in a day so the situation wasn’t perfect.

These days, thanks to the invention of the atomic clock, the SI standard of time (UTC: Coordinated Universal Time) has so little drift even a 100,000 years wouldn’t see the clock lose a second. And synchronising to UTC couldn’t be simpler no matter where you are in the world—thanks to NTP (Network Time Protocol) and NTP servers.

Now using GPS signals or transmissions put out by organisations like NIST (National Institute for Standards and Time-WVBB broadcast) and NPL (National Physical Laboratory—MSF broadcast) and using NTP servers, ensuring you are synchronised to UTC is simple.

NTP servers like Galleon’s NTS 6001 GPS receive a atomic clock time signal and distributes it around a network keeping every device to within a few milliseconds of UTC.

 

Galleon's NTS 6001 GPS Time Server

Using NIST Time Servers

  |   By

The National Institute for Standards and Technology (NIST) is one of the world’s leading atomic clock laboratories, and is the leading American time authority. Part of a constellation of national physics laboratories, NIST help ensure the worlds atomic clock time standard UTC (Coordinated Universal Time) is kept accurate and is available for the American people to use as a time standard.

All sorts of technologies rely on UTC time. All the machines on a computer network are usually synchronised to source of UTC, while technologies such as ATM’s, closed-circuit television (CCTV) and alarm systems require a source of NIST time to prevent errors.

Part of what NIST does is to ensure that sources of UTC time are readily available for the technologies to utilise, and NIST offer several means of receiving their time standard.

The Internet

The internet is the easiest method of receiving NIST time and in most Windows based operating systems, the NIST time standard address is already included in the time and date settings, allowing easy synchronisation. If it isn’t, to synchronise to NIST you simply need to double click on the system clock (bottom right hand corner) and enter the NIST server name and address. A full list of NIST Internet servers, here:

The Internet, however, is not a particularly secure location to receive a source of NIST time. Any Internet time source will require and open port in the firewall (UDP port 123) for the time signal to get through. Obviously, any gap in a firewall can lead to security issues, so fortunately NIST provide another method of receiving their time.

NTP Time Servers

NIST, from their transmitter in Colorado, broadcasts a time signal that all of North America can receive. The signal, generated and kept true by NIST atomic clocks, is highly accurate, reliable and secure, received externally to the firewall by using a WWVB timeserver (WWVB is call sign for the NIST time signal).

Once received, the protocol NTP (Network Time Protocol) will use the NIST time code and distribute it around the network and will ensure each device keeps true to it, continually making adjustments to cope with drift.

WWVB NTP time servers are accurate, secure and reliable and a must-have for anybody serious about security and accuracy who wants to receive a source of NIST time.

Japan Loses Atomic Clock Signal after Quakes

  |   By

Having suffered earthquakes, a catastrophic tsunami, and a nuclear accident, Japan has had a terrible start to the year. Now, weeks after these terrible incidents, Japan is recovering, rebuilding their damaged infrastructure and trying to contain the emergencies at their stricken nuclear power plants.

But to add insult t injury, many of the Japanese technologies that rely on an accurate atomic clock signals are starting to drift, leading to problems with synchronisation. Like in the UK, Japan’s National Institute of Information, Communications and Technology broadcast an atomic clock time standard by radio signal.

Japan has two signals, but many Japanese NTP servers rely on the signal broadcast from mount Otakadoya, which is located 16 kilometres from the stricken Daiichi power station in Fukushima, and falls within the 20 km exclusion zone imposed when the plant started leaking.

The consequence is that technicians have been unable to attend to the time signal. According to the National Institute of Information, Communications, and Technology, which usually transmits the 40-kilohertz signal, broadcasts ceased a day after the massive Tohoku earthquake struck the region on 11 March. Officials at the institute said they have no idea when service might resume.

Radio signals that broadcast time standards can be susceptible to problems of this nature. These signals often experience outages for repair and maintenance, and the signals can be prone to interference.

As more and more technologies, rely on atomic clock timing, including most computer networks, this susceptibility can cause a lot of apprehension amongst technology managers and network administrators.

Fortunately, a less vulnerable system of receiving time standards is available that is just as accurate and is based on atomic clock time—GPS.

The Global Positioning System, commonly used for satellite navigation, contains atomic clock time information used to calculate positioning. These time signals are available everywhere on the planet with a view of the sky, and as it is space-based, the GPS signal is not susceptible to outages and incidents such as in Fukushima.

 

Importance of Time Synchronisation when Working in the Cloud

  |   By

Cloud computing has been foreseen as being the next big step in the development of information technology with more and more businesses and IT networks becoming cloud reliant and doing away with traditional methods.

The term ‘Cloud Computing’ refers to the use of on demand programs and services online including the storing of information over the internet, and using applications not installed on host machines.

Cloud computing mean that users no longer need to own, install and run software in individual machines, and doesn’t require large capacity storage. It also allows remote computing, enabling users to use the same services, work on the same documents, or access the network at any workstation able to log onto the cloud service.

While these advantages are appealing to businesses enabling them to lower IT costs while providing the same network capabilities, there are disadvantages to cloud computing.

Firstly, to work on the cloud you are reliant on a working network connection. If there is a problem with the line, whether in your locale or with the cloud service provider, you can’t work—even offline.

Secondly, peripherals such as printers and back up drives may not work properly on a cloud-orientated machine, and if you are using a non-specified computer, you won’t be able to access any network hardware unless the specific drivers and software are installed on the machine.

Lack of control is another issue. Being part of a cloud service means that you have to adhere to the terms and conditions of the cloud host, which may affect all sorts of issues such as data ownership and the number of users that can access the system.

Time synchronisation is essential for cloud services, with precise and accurate time needed to ensure that every device that connects to the cloud is logged accurately. Failure to ensure precise time could lead to data getting lost or the wrong version of a job overriding new versions.

To ensure precise time for cloud services, NTP time servers, receiving the time from an atomic clock, are used to maintain accurate and reliable time. A cloud service will essentially be governed by an atomic clock once it is synchronised to an NTP server, so no matter where users are in the world, the cloud service can ensure the correct time is logged preventing data loss and errors.

Galleon NTP server