Atomic Clocks and the GPS Time Server

  |   By

Atomic clocks have been around since the 1950’s when NPL (National Physical Laboratory) in the UK developed the first reliable caesium based clock. Before atomic clocks, electronic clocks were the most accurate method of keeping track of time but while an electrical clock may lose a second in every week or so, a modern atomic clock will not lose a single second in hundreds of millions of years.

Atomic clocks are not just used to keep track of time. The atomic clock is an integral part of the GPS system (Global Positioning System) as each GPs satellite has its own onboard atomic clock that generates a time signal that is picked up by GPS receivers who can calculate their position by using the precise signal from three or more satellites.

Atomic clocks need to be used as the signal s from the satellites travel at the speed of light and as light travels nearly 300,000 km each second any slight inaccuracy could put navigation out by miles.

A GPS time server is a network time server that uses the time signal from the GPS network’s satellites to synchronise the time on computer networks. A GPS time server often uses NTP (Network Time Protocol) as a method of distributing time which is why these devices are often referred to as NTP GPS time servers.

Computer networks that are synchronised using a dedicated time server are normally synchronised to UTC (Coordinated Universal Time) and while the GPS signal is not UTC, GPS time, like UTC, is based on International Atomic Time (TAI) and is easily converted by NTP.

Step by Step Installing A Dedicated NTP Time Server

  |   By

A time server is a crucial piece of kit for any network. Time synchronisation is imperative in keeping a network secure and reliable. Time synchronisation, however, need not be the headache many administrators assume it is going to be.

Most of the difficulties of time synchronisation have been taken care of thanks to the protocol NTP (Network Time Protocol). Whilst NTP is not the only time synchronisation software available it is by far the most widely used (due mainly to the fact that it has been around since the 1980’s and is still being developed today).

NTP uses a single time source and distributes it from machine-to-machine checking each PC or device for drift then adjusting for it. NTP is normally installed on Windows and Linux systems (or at least a simplified version called SNTP) although it is freely downloadable from the NTP homepage. While NTP can quite easily receive any time source from the Internet this can cause major security issues no to mention a lack of accuracy that many online NTP servers suffer from.

The most accurate and secure method is to use an external network time server as these sit within the firewall. They also receive a UTC (Coordinated Universal Time) reference direct from an atomic clock which makes them stratum 1 devices. Most internet time servers are stratum 2 servers. NTP uses strata to define how far away a server is from the source so an atomic clock is a stratum 0 device while a computer that receives time direct from a NTP server becomes a stratum 2 device and so on.

The only decision that really needs to be made when installing a dedicated NTP time server is which time reference is best. There are two main methods of receiving a secure, accurate and authenticated UTC time reference; the GPS network (Global Positioning System) or national physics laboratories long wave radio transmissions.

The latter system is not available in every country although the USA, UK and Germany have strong signals known as WWVB, MSF and DCF respectively. These can often be picked up outside the borders of these countries although the signals are vulnerable to interference, outages and local topography.

A GPS NTP server system is less vulnerable to these things and as long as there is a clear view of the sky (such as a rooftop or open window) the GPS time signal can be picked up anywhere on the globe.