Facts of Time

  |   By

From wristwatches to atomic clocks and NTP time servers, the understanding of time has become crucial for many modern technologies such as satellite navigation and global communications.

From time dilation to the effects of gravity on time, time has many weird and wonderful facets that scientists are only beginning to understand and utilise. Here are some interesting, weird and unusual facts about time:

•    Time is not separate from space, time makes up what Einstein called four dimensional space time. Space time can be warped by gravity meaning that time slows down the greater the gravitational influence.  Thanks to atomic clocks, time on earth can be measured at each subsequent inch above the earth’s surface. That means that every bodies feet are younger than their head as time runs slower the lower to the ground you get.

•    Time is also affected by speed. The only constant in the universe is the speed of light (in a vacuum) which is always the same. Because of Einstein’s famous theories of relativity anybody travelling at close to the speed of light a journey to an observer that would have taken thousands of years would have passed within seconds. This is called time dilation.

•    There is nothing in contemporary physics that prohibits time travel both forward and backwards in time.

•    There are 86400 seconds in a day, 600,000 in a week, more than 2.6 million in a month and more than 31 million in a year. If you live to be 70 years old then you will have lived through over 5.5 billion seconds.

•    A nanosecond is a billionth of a second or roughly the time it takes for light to travel about 1 foot (30 cm).

•    A day is never 24 hours long. The earth’s rotation is speeding up gradually which means the global timescale UTC (coordinated universal time) has to have leap seconds added once or twice a year. These leap seconds are automatically accounted for in any clock synchronization that uses NTP (Network Time Protocol) such as a dedicated NTP time server.

The Possibility of Time Travel

  |   By

Exploring the possibilities of time travel including: Time paradoxes, worm holes, 4 dimesnsional space, atomic clocks and NTP servers

Time travel has always been a much loved concept for science fiction writers. From HG Wells’ Time Machine to Back to the Future, travelling forwards or backwards in time has captivated audiences for centuries. However, thanks to the work of modern thinkers like Einstein, it appears that time travel is much a possibility of science fact as it is fiction.

Time travel is not only possible but we do it all the time. Every second that passes is a second further into the future so we are all travelling forward in time. However we think if time travel we imagine a machine that transports individuals hundreds or thousands of years in to the future or past so is that possible.

Well, thanks to Einstein’s theories of general and special relativity, time ravel is certainly possible. We know thanks to the development of atomic clocks that Einstein’s theories about speed and gravity affecting the passage of time is correct. Einstein suggested that gravity would warp space-time (the term he gave to four dimensional space that includes directions plus time) and this has been tested. In fact modern atomic clocks can pick out the minute differences in the passage of time every subsequent inch above the earth’s surface as time speeds up as the effect of the earth’ s gravity weakens.

Einstein predicted speed too would affect time in what he described as time dilation. For any observer travelling close to the speed of light a journey that to an outsider may have taken thousands of years would have passed within seconds. Time dilation means that travelling hundreds of years into the future in a matter of seconds is certainly possible. However, would it be possible to get back again?

This is where many scientists are divided. Strictly speaking theoretical properties of space time do allow for this, although for any travelling back in time a worm hole would have to be created or found. A worm hole is a theoretical link between two parts of space where a traveller could enter one end and appear somewhere completely different at the other end this may be another part of the universe or indeed another point in time.

However, critics of the possibility of time travel point out that because travellers from the future have never visited us that probably means that time travel will never be possible. They also point out the any travelling backwards in time could create paradoxes (what would happen to you if you were mean enough to go back in time and kill your grandparents).

However, time paradoxes exist now. Many computer networks are not synchronised which can lead to errors, loss of data or paradoxes like emails being sent before they were received. To avoid any time crisis it is important for all computer networks to be perfectly synchronised. The best and most accurate method of doing this is to use a NTP time server that receives the time from an atomic clock.

Germans Enter Race to Build the Worlds Most Accurate Clock

  |   By

Following the success of Danish researchers working in conjunction with NIST (National Institute for Standards and Time), who unveiled the world’s most accurate atomic clock earlier this year; German scientist have entered the race to build the world’s most precise timepiece.

Researchers at the Physikalisch-Technische Bundesanstalt (PTB) in Germany are using use new methods of spectroscopy to investigate atomic and molecular systems and hope to develop a clock based around a single aluminium atom.

Most atomic clocks used for satellite navigation (GPS), as references for computer network NTP servers and air traffic control have traditionally been based on the atom caesium. However, the next generation of atomic clocks, such as the one unveiled by NIST which is claimed to be accurate to within a second every 300 million years, uses the atoms from other materials such as strontium which scientists claim can be potentially more accurate than caesium.

Researchers at PTB have opted to use single aluminium atoms and believe they are on the way to developing the most accurate clock ever and believe there is huge potential for such a device to help us understand some of the more complicated aspects of physics.

The current crop of atomic clocks allow technologies such as satellite navigation, air traffic control and network time synchronisation using NTP servers but it is believed the increases accuracy of the next generation of atomic clocks could be used to reveal some of the more enigmatic qualities of quantum science such as string theory.

Researchers claim the new clocks will provide such accuracy they will even be able to measure the minute differences in gravity to within each centimetre above sea-level.

Heroes of Time

  |   By

Chronology – the study of time- has provided science and technology with some incredible innovations and possibilities. From atomic clocks, NTP servers and the GPS system, true and accurate chronology has changed the shape of the world.

Time and the way it is counted has been a preoccupation of mankind since the earliest civilisations. Early chronologists spent their time trying to establish calendars but this proves to be more complicated than first imagined primarily because the earth takes a quarter of a day more than 365 days to orbit the sun.

Establishing the right number of leap days was one of the first challenges and it took several attempts at calendars until the modern Gregorian calendar became adopted by the globe.

When it came to monitoring time at a smaller level great advances were made by Galileo Galilei who would have built the first pendulum clock if only his death hadn’t interrupted his plans. Pendulums were finally invented by Christiaan Huygens and provided the first true glimpse of accurately monitoring the time throughout the day.

The next steps in chronology couldn’t take place though until we had a better understanding of time itself. Newton (Sir Isaac) had the first ideas and had the notion time was absolute” and would flow “equably” for all observers. This would have been an obvious idea to Newton as many of us regard time as unchanging but it was Einstein in his special theory of relativity that proposed that in fact time wasn’t a constant and would differ to all observers.

It was Einstein’s ideas that proved correct and his model of time and space paved the way for many of the modern technologies we take for granted today such as the atomic clock.

However, chronology doesn’t stop there, timekeepers are constantly looking for ways of increasing accuracy with modern atomic clocks so precise they would not lose a second in millions of years.

There are other notable figures in the modern world of chronology too. Professor David Mills from the University of Delaware devised a protocol in the 1980’s to synchronise computer networks.

His Network Time Protocol (NTP) is now used in computer systems and networks all over the world via NTP time servers. A NTP server ensures computers on opposite sides of the globe can run exactly the same time.

The Atom and Time keeping

  |   By

Nuclear Weapons, computers, GPS, atomic clocks and carbon dating – there is much more to atoms than you think.

Since the beginning of the twentieth century mankind has been obsessed with atoms and the minutiae of our universe. Much of the first part of the last century, mankind became obsessed with harnessing the hidden power of the atom, revealed to us by the work of Albert Einstein and finalised by Robert Oppenheimer.

However, there has been much more to our exploration of the atom than just weapons. The studying of the atoms (quantum mechanics) has been at the root of most of our modern technologies such as computers and the Internet.  It is also in the forefront of chronology – the measuring of time.

The atom plays a key role in both timekeeping and time prediction. The atomic clock, which is utilised all over the world by computer networks using NTP servers and other technical systems such as air traffic control and satellite navigation.

Atomic clocks work by monitoring the extremely high frequency oscillations of individual atoms (traditionally caesium) that never changes at particular energy states. As caesium atoms resonate over a 9 billion times every second and never alters it its frequency it makes the m highly accurate (losing less than a second every 100 million years)

But atoms can also be used to work out not just accurate and precise time but they can also be utilised in establishing the age of objects. Carbon dating  is the name given to this method which measures the natural decay of carbon atoms. All of us are made primarily of carbon and like other elements carbon ‘decays’ over time where the atoms lose energy by emitting ionizing particles and radiation.

In some atoms such as uranium this happens very quickly, however, other atoms such as iron are highly stable and decay very, very slowly. Carbon, while it decays quicker than iron is still slow to lose energy but the energy loss is exact over time so by analysing carbon atoms and measuring their strength it can be quite accurately ascertained when the carbon originally formed.