The Perils of Online Time Servers

  |   By

For computer networks, accurate time is essential for preventing errors, fraud and ensures security. Everything from internet banking to air traffic control relies on precise and accurate time, but many organisations take unnecessary risks when it comes to the time on their networks and rely on online time servers instead of a dedicated NTP server

… Continue reading

Installing a GPS Time Server for Network Synchronisation

  |   By

As the name suggests, GPS time servers receive their time from the GPS system (Global Positioning System). The GPS signal is basically just a time code sent down from the satellites’ onboard atomic clocks. This time signal is what satellite navigation systems use to triangulate positioning, but because it is generated by atomic clocks is extremely accurate and precise.

… Continue reading

Understanding your Network Time Server

  |   By

Network time servers are responsible for providing a network’s time. Of course, all computers have their own onboard clocks built into the motherboards, but these devices are only cheap oscillators and are prone to drift. When you have a network of hundreds or even thousands of PCs and devices, if there was no synchronisation to a single network time source, all the machines could be relaying completely different times, often several minutes apart.

… Continue reading

Keeping Time with Network Time Protocol

  |   By

When it comes to network time synchronisation, Network Time Protocol (NTP) is by far the most widely used software protocol. Whether it’s for keeping a network of hundreds or thousands of machines synchronised, or keeping a single machine running true, NTP offers the solution. Without NTP, and the NTP server, many of the tasks we perform on the internet, from shopping to online banking, simply wouldn’t be possible.

… Continue reading

Using GPS for Accurate and Secure Time for any Network

  |   By

Perhaps the safest and most accurate means of obtaining a time source is by utilising the time codes transmitted by the GPS (Global Positioning System). All that is required for picking up these GPS signals is a GPS NTP server, which will not only receive the time code, but also distribute it around the network, check for drift and maintain stable and precise time on all machines.

… Continue reading

Receiving GPS Time for Network Synchronisation

  |   By

To synchronise a computer network or other technology systems to GPS time, all that is required is a GPS network time server. GPS network time servers are simple to install, simple to use and can maintain accuracy for all sorts of technologies. Used by organisations as diverse as stock exchanges, air traffic control and banking systems, GPS time servers provide an efficient and cost effective solution to maintain network synchronicity.

… Continue reading

The Cost of Inaccurate Network Time

  |   By

When a network loses time, you are at risk of losing far more than just what time of day it is. Time is an essential aspect of network security and any errors in a network time server can lead to catastrophic result. However, the solution for ensuring network security is fairly simple and relatively inexpensive – the NTP time server.

… Continue reading

Google Finds Innovative Way to Avoid Leap Seconds

  |   By

Leap Seconds have been in use since the development of atomic clocks and the introduction of the global timescale UTC (Coordinated Universal Time). Leap Seconds prevent the actual time as told by atomic clocks and the physical time, governed by the sun being highest at noon, from drifting apart.

Since UTC began in the 1970’s when UTC was introduced, 24 Leap Seconds have been added. Leap seconds are a point of controversy, but without them, the day would slowly drift into night (albeit after many centuries); however, they do cause problems for some technologies.

NTP servers (Network Time Protocol) implement Leap Seconds by repeating the final second of the day when a Leap Second is introduced. While Leap Second introduction is a rare event, occurring only once or twice a year, for some complex systems that process thousands of events a second this repetition causes problems.

For search engine giants, Google, Leap Seconds can lead to their systems from working during this second, such as in 2005 when some of its clustered systems stopped accepting work. While this didn’t lead to their site from going down, Google wanted to address the problem to prevent any future problems caused by this chronological fudge.

Its solution was to write a program that essentially lied to their computer servers during the day of a Leap Second, making the systems believe the time was slightly ahead of what the NTP servers were telling it.

This gradual speeding up time meant that at the end of a day, when a Leap Second is added, Google’s timeservers do not have to repeat the extra second as the time on its servers would already be a second behind by that point.

Galleon GPS NTP server

Whilst Google’s solution to the Leap Second is ingenious, for most computer systems Leap Seconds cause no problems at all. With a computer network synchronised with an NTP server, Leap Seconds are adjusted automatically at the end of a day and occur only rarely, so most computer systems never notice this small hiccup in time.