Time Server Basic Questions Answered

  |   By

What is a time server?

A time server is a device that receives and distributes a single time source across a computer network for the purposes of time synchronization. These devices are often referred to as a NTP server, NTP time server, network time server or dedicated time server.

And NTP?

NTP – Network Time Protocol is a set of software instructions designed to transfer and synchronize time across LANs (Local Area Network) or WANS (Wider Area Network). NTP is one of the oldest known protocols in use today and is by far the most commonly used time synchronization application.

What timescale should I use?

Coordinated Universal Time (UTC) is a global timescale based on the time told by atomic clocks. UTC doesn’t take into account time zones and is therefore ideal for network applications as in principle by synchronizing a network to UTC you are in effect synchronizing it to every other network that utilises UTC.

Where does a time server receive the time from?

A time server can utilise the time from anywhere such as a wrist watch or wall clock. However, any sensible network administrator would opt to use a source of UTC time to ensure the network is as accurate as possible. UTC is available from several ready sources. The most used is perhaps the internet. There are many ‘time servers’ on the internet that distribute UTC time. Unfortunately, many are not at all accurate an in using an internet time source you could be leaving the network vulnerable as malicious users can take advantage of the open port in the firewall where the timing information flows.

It is far better to use a dedicated NTP time server that receives the UTC time signal external to the network and firewall. The best methods for doing this is to either use the GPS signals transmitted from space or the national time and frequency transmissions broadcast by several countries in long wave.

The Measuring of Time

  |   By

Measuring the passing of time has been a preoccupation of humans since the dawn of civilization. Broadly speaking, measuring time involves using some form of repetitive cycle to work out how much time has passed. Traditionally this repetitive cycle has been based on the movement of the heavens such as a day being a revolution of the Earth, a month being an entire orbit of the Earth by the moon and a year being earth’s orbit of the sun.

As our technology progressed we have been able to measure time in smaller and smaller increments from sundials that allowed us to count the hours, mechanical clocks that let us monitor the minutes, electronic clocks that let is for the first time accurately record seconds to the current age of atomic clocks where time can be measured to the nanosecond.

With the advancement in chronology that has led to technologies such as NTP clocks, time servers, atomic clocks, GPS satellites and modern global communications, comes with another conundrum: when does a day start and when does it finish.

Most people assume a day is 24 hours long and that it runs from midnight to midnight. However, atomic clocks have revealed to us that a day is not 24 hours and in fact the length of a day varies (and is actually increasing gradually over time).

After atomic clocks were developed there was a call from many sectors to come up with a global timescale. One that uses the ultra precise nature of atomic clocks to measure its passing but also one that takes into account the Earth’s rotation. Failing to account for the variable nature of a day’s length would mean any static timescale would eventually drift with day slowly drifting into night.

To compensate for this the world’s global timescale, called UTC (coordinated universal time) has additional seconds added (leap seconds) to ensure that there is no drift. UTC time is kept true by a constellation of atomic c clocks and it is utilised by modern technologies such as the NTP time server which ensures computer networks all run  the exact same precise time.

Heroes of Time

  |   By

Chronology – the study of time- has provided science and technology with some incredible innovations and possibilities. From atomic clocks, NTP servers and the GPS system, true and accurate chronology has changed the shape of the world.

Time and the way it is counted has been a preoccupation of mankind since the earliest civilisations. Early chronologists spent their time trying to establish calendars but this proves to be more complicated than first imagined primarily because the earth takes a quarter of a day more than 365 days to orbit the sun.

Establishing the right number of leap days was one of the first challenges and it took several attempts at calendars until the modern Gregorian calendar became adopted by the globe.

When it came to monitoring time at a smaller level great advances were made by Galileo Galilei who would have built the first pendulum clock if only his death hadn’t interrupted his plans. Pendulums were finally invented by Christiaan Huygens and provided the first true glimpse of accurately monitoring the time throughout the day.

The next steps in chronology couldn’t take place though until we had a better understanding of time itself. Newton (Sir Isaac) had the first ideas and had the notion time was absolute” and would flow “equably” for all observers. This would have been an obvious idea to Newton as many of us regard time as unchanging but it was Einstein in his special theory of relativity that proposed that in fact time wasn’t a constant and would differ to all observers.

It was Einstein’s ideas that proved correct and his model of time and space paved the way for many of the modern technologies we take for granted today such as the atomic clock.

However, chronology doesn’t stop there, timekeepers are constantly looking for ways of increasing accuracy with modern atomic clocks so precise they would not lose a second in millions of years.

There are other notable figures in the modern world of chronology too. Professor David Mills from the University of Delaware devised a protocol in the 1980’s to synchronise computer networks.

His Network Time Protocol (NTP) is now used in computer systems and networks all over the world via NTP time servers. A NTP server ensures computers on opposite sides of the globe can run exactly the same time.