Radio Controlled Clocks Atomic Clocks on Shortwave

  |   By

Atomic clocks are a marvel compared to other forms of timekeepers. It would take over 100,000 years for an atomic clock to lose a second in time which is staggering especially when you compare it to digital and mechanical clocks that can drift that much in a day.

But atomic clocks are not practical pieces of equipment to have around the office or home. They are bulky, expensive and require laboratory conditions to operate effectively. But making use of an atomic clock is straightforward enough especially as atomic time keepers like NIST (National Institute of Standards and Time) and NPL (National Physical Laboratory) broadcast the time as told by their atomic clocks on short wave radio.

NIST transmits its signal, known as WWVB from Boulder, Colorado and it is broadcast on an extremely low frequency (60,000 Hz). The radio waves from WWVB station can cover all of the continental United States plus much of Canada and Central America.

The NPL signal is broadcast in Cumbria in the UK and it is transmitted along similar frequencies. This signal, known as MSF is available throughout most of the UK and similar systems are available in other countries such as Germany, Japan and Switzerland.

Radio controlled atomic clocks receive these long wave signals and correct themselves according to any drift the clock detects. Computer networks also take advantage of these atomic clocks signals and use the protocol NTP (Network Time Protocol) and dedicated NTP time servers to synchronise hundreds and thousands of different computers.

Choosing a Time Source for UTC Synchronization

  |   By

Ensuring a computer network is time synchronized is vital in modern computer networks. Synchronization, not just between different machines on a network, but also each computer network that communicates with other networks needs to be synchronized with them too.

UTC (Coordinated Universal Time) is a global timescale that allows networks on other sides of the globe to be synchronized together. Synchronizing a network to UTC is relatively straightforward thanks to NTP (Network Time Protocol) the software protocol designed for this very purpose.

Most operating systems, including the latest Microsoft incarnation Windows 7, have a version of NTP (often in a simplified form known as SNTP), that allows a single time source to be used to synchronize every computer and device on a network.

Selecting a source for this time reference is the only real difficulty in synchronizing a network. There are three main locations where UTC time can accurately be received from:

Internet Time

There are many sources of internet time and the latest version of Windows (Windows 7) automatically synchronizes to Microsoft’s time server time.windows.com, so if Internet time is adequate Windows 7 users need not alter their settings. However, for computer networks where security is an issue then internet time sources can leave a system vulnerable as the time has to be received through the firewall forcing a UDP port to be left open. This can be utilised by malicious users. Furthermore, there is no authentication with an internet time source so the timecode could be hijacked before it arrives at your network.

GPS Time

Available literally everywhere on the globe, GPS provides a 24-hour, 365 days-a-year source of UTC time. Delivered externally to the firewall via the GPS satellite signal, time synchronization with GPS is accurate and secure.

Radio Transmissions

Usually broadcast by national physics laboratories such as NIST in the US and the UK’s NPL, the time signals are received via longwave and are also external to the firewall so are secure and accurate.

A dedicated NTP time server can receive both radio and GPS time signal guaranteeing accuracy and security.