Competition for GPS Ever Closer

  |   By

Written by Richard N Williams for Galleon Systems

Since its release to the civilian population the Global Positioning System (GPS) has greatly improved and enhanced our world. From satellite navigation to the precise time used by NTP servers (Network Time Protocol) and much or our modern world’s technology.

And GPS has for several years been the only Global Navigation Satellite Systems (GNSS) and is used the world over, however, times are now changing.

There are now three other GNSS systems on the horizon that will not only act as competition for GPS but will also increase its precision and accuracy.

Glonass is a Russian GNSS system that was developed during the Cold War. However, after the fall of the Soviet Union the system fell into disrepair but it has finally been revamped and is now back up and running.

The Glonass system is now being used as a navigational aid by Russian airlines and their emergency services with in-car GNSS receivers also being rolled out for the general population to use. And the Glonass system is also allowing time synchronisation using NTP time servers as it uses the same atomic clock technology as GPS.

And Glonass is not the only competition for GPS either. The European Galileo system is on track with the first satellites expected to be launched at the end of 2010 and the Chinese Compass system is also expected to be online soon which will make four fully operational GNSS systems orbiting above Earth’s orbit.

And this is good news for those interested in ultra high time synchronisation as the systems should all be interoperable meaning anyone looking to GNSS satellites can use multiple systems to ensure even greater accuracy.

It is expected that interoperable GNSS NTP time servers will soon be available to make use of these new technologies.

Understanding GPS Time in Relation to UTC

  |   By

Accurate time is so important for modern computer systems that it is now unimaginable for any network administer to configure a computer system without any regard to synchronisation.

Ensuring all machines are running an accurate and precise time, and that the entire network is synchronised together, will prevent problems arising such as data loss, failure of time sensitive transactions and enable debugging and error management which can be near impossible on networks that lack synchronicity.

There are many sources of accurate time for use with NTP time servers (Network Time Protocol). NTP servers tend to use time that is controlled by atomic clocks to ensure accuracy, and there are advantages and disadvantages to each system.

Ideally as a source of time you want it to be a source of UTC (Coordinated Universal Time) as this is the international time standard as used by computer systems worldwide. But UTC is not always accessible but there is an alternative.

GPS time

GPS time is the time as relayed by the atomic clocks on board GPS satellites. These clocks form the basic technology for the Global Positioning System and their signals are what are used to work out positing information.

But GPS time signals can also provide an accurate source of time for computer networks – although strictly speaking GPS time does differ to UTC.

No Leap Seconds

GPS time is broadcast as an integer. The signal contains the number of seconds from when the GPS clocks were first turned on (January 1980).

Originally GPS time was set to UTC but since GPS satellite have been in space the last thirty years, unlike UTC, there has been no increase to account for leap seconds – so currently GPS is running exactly 17 seconds behind UTC.

Conversion

Whilst GPS time and UTC are not strictly the same as they were originally based on the same time and only the lack of leap seconds not added to GPS makes the difference, and as this is exact in seconds, conversion of GPS time is simple.

Many GPS NTP servers will convert GPS time to UTC time (and local time if you so wish) ensuring you can always have an accurate, stable, secure and reliable source of atomic clock based time.

Choosing a Source of Time for Computer Network Synchronization

  |   By

You don’t need me to tell you how important computer network time synchronization is. If you are reading this then you are probably well aware of the importance in ensuring all your computers, routers and devices on your network are running the same time.

Failure to synchronize a network can cause all sorts of problems, although with a lack of synchronicity the problems may go unnoticed as error finding and debugging a network can be nigh on impossible without a source of synchronized time.

There are multiple options for finding a source of accurate time too. Most time sources used for synchronisation are a source of UTC (Coordinated Universal Time) which is the international timescale.
However, there are pro’s and con’s to all sources:

Internet time

There are an almost an endless number of sources of UTC time on the internet. Some of these time sources are wholly inaccurate and unreliable but there are some trusted sources put out by people like NIST (National Institute for Standards and Time) and Microsoft.

However, regardless of how trusted the time source is, there are two problems with internet time sources. Firstly, an internet time server is actually a stratum 2 device. In other words, an internet time server is connected to another time server that gets its time from an atomic clock, usually from one of the sources below. So an internet source of time is never going to be as accurate or precise as using a stratum 1 time server yourself.

Secondly, and more importantly, internet sources of time operate through the firewall so a potential security breach is available to any malicious user who wishes to take advantage of the open ports.

GPS Time

GPS time is far more secure. Not only is a GPS time signal available anywhere with a line of sight view of the sky, but also GPS time signals can be received externally to the network. By using a GPS time server the GPS time signals can be received and by using NTP (Network Time Protocol) this time can be converted to UTC (GPS time is currently 17 seconds exactly behind GPS time) then distributed around the network.

MSF/WWVB Time

Radio broadcasts in long wave are transmitted by several national physics labs. NIST and the UK’s NPL are two such organisations and they transmit the UTC signals MSF (UK) and WWVB (USA) which can be received and utilised by a radio referenced NTP server.

When Time Servers go Bad

  |   By

“Time is what prevents everything from happening at once,’ said eminent physicist John Wheeler. And when it comes to computers his words couldn’t be any more relevant.

Timestamps are the only method that a computer has to establish if an event has occurred, is meant to occur or shouldn’t be occurring just yet. For a home PC, the computer relies on the inbuilt clock that displays the time on the corner of your operating system, and for most home uses this is satisfactory enough.

However for computer networks that have to communicate with each other, relying in individual system clocks can cause untold problems:

All clocks drift, and computer clocks are no different and problems occur when two machines are drifting at different rates as the time does not match up. This poses a conundrum for a computer as it is unsure of which time to believe and time critical events can fail to occur and even simple tasks like sending an email can cause time confusion on a network.

For these reasons, time servers are commonly used to receive the time from an external source and distribute it around the network. Most of these devices use the protocol NTP (Network Time Protocol) which is designed to provide a method of synchronising time on a network.

However, time servers are only as good as the time source that they rely on and when there is a problem with that source, synchronisation will fail and the problems mentioned above can occur.

The most common cause for time server failure or inaccuracy is the reliance on internet based sources of time. These can neither be authenticated by NTP nor guaranteed to be accurate and they can also lead to security issues with firewall intrusion and other malicious attacks.

Ensuring the NTP time server continues to get a source of highly accurate time is fairly straight forward and is all a matter of choosing an accurate, reliable and secure time source.

In most parts of the world there are two methods that can provide a secure and reliable source of time:

  • GPS time signals
  • Radio referenced time signals

GPS signals are available anywhere on the planet and are based on GPS time which is generated by atomic clocks onboard the satellites.

Radio referenced signals like MSF and WWVB are broadcast on long wave from physics laboratories like NIST and NPL.