Archive for the ‘rubidium’ Category

The Atomic Clock Scientific Precision

Friday, February 5th, 2010

Precision is becoming increasingly important in modern technologies and none more so than accuracy in time keeping. From the internet to satellite navigation, precise and accurate synchronicity is vital in the modern age.

In fact many of the technologies that we take for granted in today’s world, would not be possible if it wasn’t for the most accurate machines invented – the atomic clock.

Atomic clocks are just timekeeping devices like other clocks or watches. But what stands them apart is the accuracy they can achieve. As a crude example your standard mechanical clock, such as a town centre clock tower, will drift by as much as a second a day. Electronic clocks such as digital watches or clock radios are more accurate. These types of clock drift a second in about a week.

However, when you compare the precision of an atomic clock in which a second will not be lost or gained in 100,000 years or more the accuracy of these devices is incomparable.

Atomic clocks can achieve this accuracy by the oscillators they use. Nearly all types of clock have an oscillator. In general, an oscillator is just a circuit that regularly ticks.

Mechanical clocks use pendulums and springs to provide a regular oscillation while electronic clocks have a crystal (usually quartz) that when an electric current is run through, provides an accurate rhythm.

Atomic clocks use the oscillation of atoms during different energy states. Often caesium 133 (and sometimes rubidium) is used as its hyperfine transitional oscillation is over 9 billion times a second (9,192,631,770) and this never changes. In fact, the International System of Units (SI) now officially regards a second in time as 9,192,631,770 cycles of radiation from the caesium atom.

Atomic clocks provide the basis for the world’s global timescale – UTC (Coordinated Universal Time). And computer networks all over the world stay in sync by using time signals broadcast by atomic clocks and picked up on NTP time servers (Network Time Server).

Rubidium Oscillators Additional Precision for NTP Serve (Part 2)

Saturday, January 9th, 2010

Continued…

However, there are some occasions when a time server can lose connection with the atomic clock and not receive the time code for a prolonged period of time. Sometimes this may be because of downtime by the atomic clock controllers for maintenance or that nearby interference is blocking the transmission.

Obviously the longer the signal is down the more potential drift may occur on the network as the crystal oscillator in the NTP server is the only thing keeping time. For most applications this should never be a problem as the most prolonged period of downtime is not normally more than three or four hours and the NTP server would not have drifted by much in that time and the occurrence of this downtime is quite rare (maybe once or twice a year).

However, for some ultra precise high end applications rubidium crystal oscillators are beginning to be used as they don’t drift as much as quartz. Rubidium (often used in atomic clocks themselves instead of caesium) is far more accurate an oscillator than quartz and provides better accuracy for when there is no signal to a NTP time server allowing the network to maintain a more accurate time.

Rubidium itself is an alkali metal, similar in properties to potassium. It is very slightly radioactive although poses no risk to human health (and is often used in medicine imaging by injecting it into a patient). It has a half life of 49 billion years (the time it takes to decay by half – in comparison some of the most lethal radioactive materials have half-lives of under a second).

The only real danger posed by rubidium is that it reacts rather violently to water and can cause fire

Rubidium Oscillators Additional Precision for NTP Serve (Part 1)

Thursday, January 7th, 2010

Oscillators have been essential in the development of clocks and chronology. Oscillators are just electronic circuitry that produces a repetitive electronic signal. Often crystals such as quartz are used to stabilise the frequency of the oscillation,

Oscillators are the primary technology behind electronic clocks. Digital watches and battery powered analogue clock are all controlled by an oscillating circuit usually containing a quartz crystal.

And while electronic clocks are many times more accurate than a mechanical clock, a quartz oscillator will still drift by a second or two each week.

Atomic clocks of course are far more accurate. They still, however, use oscillators, most commonly caesium or rubidium but they do so in a hyper fine state often frozen in liquid nitrogen or helium. These clocks in comparison to electronic clocks will not drift by a second in even a million years (and with the more modern atomic clocks 100 million years).

To utilise this chronological accuracy a network time server that uses NTP (Network Time Protocol) can be used to synchronise complete computer networks. NTP servers use a time signal from either GPS or long wave radio that comes direct from an atomic clock (in the case of GPS the time is generated in a clock onboard the GPS satellite).

NTP servers continually check this source of time and then adjust the devices on a network to match that time. In between polls (receiving the time source) a standard oscillator is used by the time server to keep time. Normally these oscillators are quartz but because the time server is in regular communication with the atomic clock say every minute or two, then the normal drift of a quartz oscillator is not a problem as a few minutes between polls would not lead to any measurable drift.

To be continued…