Home > Rubidium Oscillators Additional Precision for NTP Serve (Part 1)

Rubidium Oscillators Additional Precision for NTP Serve (Part 1)

Oscillators have been essential in the development of clocks and chronology. Oscillators are just electronic circuitry that produces a repetitive electronic signal. Often crystals such as quartz are used to stabilise the frequency of the oscillation,

Oscillators are the primary technology behind electronic clocks. Digital watches and battery powered analogue clock are all controlled by an oscillating circuit usually containing a quartz crystal.

And while electronic clocks are many times more accurate than a mechanical clock, a quartz oscillator will still drift by a second or two each week.

Atomic clocks of course are far more accurate. They still, however, use oscillators, most commonly caesium or rubidium but they do so in a hyper fine state often frozen in liquid nitrogen or helium. These clocks in comparison to electronic clocks will not drift by a second in even a million years (and with the more modern atomic clocks 100 million years).

To utilise this chronological accuracy a network time server that uses NTP (Network Time Protocol) can be used to synchronise complete computer networks. NTP servers use a time signal from either GPS or long wave radio that comes direct from an atomic clock (in the case of GPS the time is generated in a clock onboard the GPS satellite).

NTP servers continually check this source of time and then adjust the devices on a network to match that time. In between polls (receiving the time source) a standard oscillator is used by the time server to keep time. Normally these oscillators are quartz but because the time server is in regular communication with the atomic clock say every minute or two, then the normal drift of a quartz oscillator is not a problem as a few minutes between polls would not lead to any measurable drift.

To be continued…

This post was written by

Stuart

Related Reading