Home > gps time server

Archive for the ‘gps time server’ Category

Accurate Time – NIST Unveils New Atomic Clock With Potential To Keep Accurate Time For 300m Years

Tuesday, May 6th, 2014

Accurate time specialists, Galleon Systems, assess the implications of NIST’s new atomic clock.

NIST (National Institute of Standards and Technology) has revealed a new atomic clock, claiming that it has the capability to maintain accurate time for the next 300 million years.

(more…)

What Is NTP? What Are Its Benefits? Find Out Now…

Thursday, March 13th, 2014

NTP time server specialists, Galleon, answers what is NTP? Highlighting the benefits of NTP servers for businesses.    

What Is NTP?

What Is NTP?

Galleon Systems, Provider Of NTP Time Servers

In simple terms NTP, or Network Time Protocol, is a system used to synchronise the time of day across computer networks. Originally developed by David L. Mills of the University of Delaware, NTP works by using a single time source, enabling it to synchronise time across all devices that are part of a network.

Did you know? NTP was first implemented in 1985. However, some of its predecessors date back as far as 1979.

(more…)

Network Time Protocol DDoS Attacks, What’s the Solution?

Tuesday, February 25th, 2014
Network Time Protocol DDoS Attacks

DDoS attacks hit network time protocol.

A spate of Network Time Protocol DDoS attacks have hit the headlines recently with the BBC and PC World all reporting an increase in such incidents. Has your business suffered? Then read on…

Network time server manufacturers and suppliers, Galleon Systems, understand Network Time Protocol and provide numerous technologies capable of combatting the recent outbreak of Network Time Protocol DDoS attacks. Recently, the BBC made reference to online security specialists Cloudfare, which reported the ‘biggest’ attack of its kind and warned that a key vulnerability of internet infrastructure had been exploited.  (more…)

Why your Network Needs an NTP GPS Time Server

Monday, May 21st, 2012

NTP GPS time servers are becoming an essential tool for business networks. With the ability to synchronise hundreds of computer, switches and routers, an NTP GPS time server can keep a network accurate to within a few milliseconds of UTC (Coordinated Universal Time). (more…)

Installing a GPS Time Server for Network Synchronisation

Thursday, May 10th, 2012

When it comes to network time synchronisation, these days, you just can’t be too careful. Accurate and secure time is essential to keep a network healthy and to avoid problems. However, getting a secure source of time is often not as easy as it sounds. Many online time sources can expose a network to vulnerabilities, such as allowing malicious code through the firewall. Furthermore, an internet time source could itself be compromised and their accuracy is never guaranteed. (more…)

Using GPS for Accurate and Secure Time for any Network

Thursday, April 26th, 2012

Because accurate and secure time is essential for any computer network finding a time source that is both precise and secure, is an important part of keeping a network healthy. With network time sources, there are plenty of choices, but not all of them can provide the security and precision needed by the modern network. (more…)

Receiving GPS Time for Network Synchronisation

Tuesday, April 24th, 2012

Most of us know how useful the GPS network is. The Global Positioning System has changed the way we navigate on the road, and most modern cars are sold complete with some form of satellite navigation system already installed. However, the Global Positioning System is not only useful for satellite navigation; it has other uses too, especially as a source of accurate time for synchronising a computer network and other such technologies with the aid of a GPS network time server.

Need for Synchronisation

Time synchronisation is vital for all sorts of technologies, especially computer networks. Having different machines with a different time can lead to all sorts of untold problems, from data getting lost to simple things such as emails arriving before they were technically sent. Without accurate synchronisation or a network time server, it is nearly impossible to keep a network running smoothly and pinpoint errors and bugs.

Other technologies too need complete synchronicity. CCTV cameras, cash machines and safety systems such as air traffic control all have to be precisely synchronised. Imagine the chaos if your local cash machine told a different time from the one next to it. In effect, you could withdraw money from one machine, while the one next to it would consider a transaction that hadn’t happened yet, allowing you to withdraw the same amount again.

GPS Time

The Global Positioning System doesn’t actually transmit any positioning information. The reason that satellite navigational systems can work out accurate positioning is due to the time signals that the GPS satellites transmit. Onboard each GPS satellite is a couple of atomic clocks. These clocks transmit their times and exact position of the satellite and it’s this information, triangulated from three or more satellites that a navigational system uses to work out exactly where it is in the world.

Atomic clocks have to be used for this process because the signals are travelling at the speed of light. A one-second inaccuracy in the time signal would lead a satellite navigational system to be in error of over 300,000 km. And it’s a testament to the atomic clocks on GPS satellites that most sat nav systems are accurate to within a few metres.

GPS Network Time Server

Because of the accuracy of the GPS time signals, and the fact that the signal are available anywhere on the planet, the GPS network is ideal for use as a master time source for computer network time synchronisation. To synchronise a computer network or other technology systems to GPS time, all that is required is a GPS network time server.

GPS network time servers do all the work for you. By use of a rooftop antenna, the time server receives the GPS signal and distributes it around a network of machines. By use of time synchronisation protocols such as NTP (Network Time Protocol), all devices can be kept within a few milliseconds of the original GPS time source. And you don’t need multiple time servers for large networks either. A single device can synchronise hundreds of devices to GPS time.

GPS network time servers are simple to install, simple to use and can maintain millisecond accuracy for all sorts of technologies. Used by organisations as diverse as stock exchanges, air traffic control and banking systems, GPS time servers provide an efficient and cost effective solution to maintain network synchronicity.

GPS Time Server – Five Reasons to Install

Wednesday, February 15th, 2012

GPS time servers are a highly accurate and secure method of synchronising a computer network to UTC (Coordinated Universal Time). GPS time servers are simple to use and ensure a network is synchronised to s secure form of time. However, many network administrators don’t see the need to use a GPS time server and continue to put their network at risk by using an online source of time for synchronisation. Here are five reasons why a GPS time server is crucial for computer network synchronisation. (more…)

The Greenwich Time Lady

Wednesday, October 26th, 2011

Time synchronisation is something easily taken for granted in this day and age. With GPS NTP servers, satellites beam down time to technologies, which keeps them synced to the world’s time standard UTC (Coordinated Universal Time).

Picture: Ruth Belville the Greenwich Time Lady

Before UTC, before atomic clocks, before GPS, keeping time synchronised was not so easy. Throughout history, humans have always kept track of time, but accuracy was never that important. A few minutes or an hour or so difference, made little difference to people’s lives throughout the medieval and regency periods; however, come the industrial revolution and the development of railways, factories and international commerce, accurate timekeeping became crucial.

Greenwich Mean Time (GMT) became time standard in 1880, taking over from the world’s first time standard railway time, developed to ensure accuracy with railway timetables. Soon, all businesses, shops and offices wanted to keep their clocks accurate to GMT, but in an age before electrical clocks and telephones, this proved difficult.

Enter the Greenwich Time Lady. Ruth Belville was a businesswoman from Greenwich, who followed in her father’s footsteps in delivering time to businesses throughout London. The Belville’s owned a highly accurate and expensive pocket watch, a John Arnold chronometer originally made for the Duke of Sussex.

Every week, Ruth, and her father before her, would take the train to Greenwich where they would synchronise the pocket watch to Greenwich Mean Time. The Belvilles would then travel around London, charging businesses to adjust their clocks their chronometer, a business enterprise that lasted from 1836 to 1940 when Ruth finally retired at the age of 86.

BY this time, electronic clocks had began to take over traditional mechanical devices and were more accurate, needing less synchronisation, and with the telephone speaking clock introduced by the General Post Office (GPO) in 1936, timekeeping services like the Belville’s became obsolete.

Today, time synchronisation is far more accurate. Network time servers, often using the computer protocol NTP (Network Time Protocol), keep computer networks and modern technologies true. NTP time servers receive an accurate atomic clock time signal, often by GPS, and distribute the time around the network. Thanks to atomic clocks, NTP time servers and the universal timescale UTC, modern computers can keep time to within a few milliseconds of each other.

 

Have Scientists Found Faster than Light Particles?

Wednesday, October 5th, 2011

The physics world got itself into a bit of a tizz this month as scientists at CERN, the European Laboratory for Particle Physics, found an anomaly on one of their experiments, which seemed to show that some particles were travelling faster than light.

Time server's can provide atomic clock accuracy

Faster than light travel for any particle is prohibited of course, according to Einstein’s Special Theory of Relativity, but the OPERA team at CERN, who fired neutrinos around a particle accelerator, travelling for 730 km, found that the neutrinos travelled the distance 20 parts per million faster than photons (light particles) meaning they broke Einstein’s speed limit.

While this experiment could prove to be one of the most important discoveries in physics, physicists are remaining sceptical, suggesting that a cause could be an error generated in the difficulties and complexities of measuring such high speeds and distances.

The team at CERN used GPS time servers, portable atomic clocks and GPS positioning systems to make their calculations, which all provided accuracy in distance to within 20cm and an accuracy of time to within 10 nanoseconds. However, the facility is underground and the GPS signals and other data streams had to be cabled down to the experiment, a latency the team are confident they took into account during their calculations.

Physicists from other organisations are now attempting to repeat the experiments to see if they get the same results. Whatever the outcome, this type of groundbreaking research is only possible thanks to the accuracy of atomic clocks that are able to measure time to millionths of a second.

To synchronise a computer network to an atomic clock you don’t need to have access to a physics laboratory like CERN as simple NTP time servers like Galleons NTS 6001 will receive an accurate source of atomic clock time and keep all hardware on a network to within a few milliseconds of it.